
Chapter 3

Analysis of Cross-Sectional Data

Note: The primary reference text for these notes is Hayashi (2000). Other comprehensive treatments
are available in Greene (2007) and Davidson and MacKinnon (2003).

Linear regression is the foundation of modern econometrics. While the importance
of linear regression in financial econometrics has diminished in recent years, it is
still widely employed. More importantly, the theory behind least-squares estima-
tors is useful in broader contexts, and many results of this chapter are special cases
of more general estimators presented in subsequent chapters. This chapter covers
model specification, estimation, small- and large-sample inference, and model se-
lection.

Linear regression is an essential tool of any econometrician and is widely used throughout finance
and economics. Linear regression’s success is owed to two key features: the availability of simple,
closed-form estimators, and the ease and directness of interpretation. However, despite the regression
estimator’s superficial simplicity, the concepts presented in this chapter will reappear in the chapters
on time series, panel data, Generalized Method of Moments (GMM), event studies, and volatility
modeling.

3.1 Model Description

Linear regression expresses a dependent variable as a linear function of independent variables, possi-
bly random, and an error.

Yi = β1X1,i +β2X2,i + . . .+βkXk,i + εi, (3.1)

where Yi is known as the regressand, dependent variable or simply the left-hand-side variable. The k
variables, X1,i, . . . ,Xk,i are known as the regressors, independent variables or right-hand-side variables.
β1, β2, . . ., βk are the regression coefficients, εi is known as the innovation, shock or error and
i = 1,2, . . . ,n index the observation. While this representation clarifies the relationship between Yi
and the Xs, matrix notation will generally be used to compactly describe models:
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y = Xβ + ε (3.3)

where X is an n by k matrix, β is a k by 1 vector, and both y and ε are n by 1 vectors.
Two vector notations will occasionally be used: row,

Y1 = X1β +ε1
Y2 = X2β +ε2
...

...
...

Yn = Xnβ +εn

 (3.4)

and column,

y = β1x1 +β2x2 + . . .+βkxk + ε. (3.5)

Linear regression allows coefficients to be interpreted, all things being equal. Specifically, the
effect of a change in one variable can be examined without changing the others. Regression analysis
also allows for models that contain all of the information relevant for determining Yi, whether these
quantities are of primary interest or not. This feature provides the mechanism to interpret the coef-
ficient on a regressor as the unique effect of that regressor (under certain conditions), a feature that
makes linear regression very attractive.

3.1.1 What is a model?

What constitutes a model is a difficult question to answer. One view of a model is that of the data
generating process (DGP). For instance, if a model postulates

Yi = β1Xi + εi

then one interpretation is that the regressand, Yi, is wholly determined by Xi and some random shock.
The alternative view is that Xi is the only relevant variable available to the econometrician that explains
variation in Yi. Everything else that determines Yi cannot be measured and, in the usual case, cannot
be placed into a framework that would allow the researcher to formulate a model.

Consider monthly returns on the S&P 500, a value-weighted index of 500 large firms in the United
States. Equity holdings and returns are generated by individuals based on their beliefs and prefer-
ences. If one were to take a (literal) data generating process view of the return on this index, data on
individual investors’ preferences and beliefs would need to be collected and formulated into a model
for market returns. Collecting data and building this model would be a substantial challenge.

On the other hand, a model can be built to explain the variation in the market based on observ-
able quantities (such as oil price changes or macroeconomic news announcements) without explicitly
collecting information on beliefs and preferences. In a model of this type, explanatory variables can
be viewed as inputs individuals consider when forming their beliefs and, subject to their preferences,
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taking actions that ultimately affect the price of the S&P 500. The model allows the relationships
between the regressand and regressors to be explored and is meaningful even though the model is not
plausibly the data generating process.

In the context of time-series data, models often postulate that a series’s past values are useful in
predicting future values. Consider building a model of monthly returns on the S&P 500 using past
returns to explain future returns. Treated as a DGP, this model implies that average returns in the
future are determined by returns in the immediate past. Alternatively, if treated as an approximation,
then one interpretation postulates that changes in risk aversion, beliefs, or other variables that influ-
ence holdings of assets change slowly (possibly in an unobservable manner). These slowly changing
“factors” produce predictability in returns. Of course, there are other interpretations, but these should
come from finance theory rather than data. The model as a proxy interpretation is additionally use-
ful as it allows models to be specified, which are only loosely coupled with theory but that capture
essential features of a theoretical model.

Careful consideration of what defines a model is a crucial step in the development of an econo-
metrician, and one should always consider which assumptions and beliefs are needed to justify any
specification.

3.1.2 Example: Cross-section regression of returns on factors

The concepts of linear regression will be explored in the context of a cross-section regression of
returns on a set of factors thought to capture systematic risk. Cross-sectional regressions in financial
econometrics date back at least to the Capital Asset Pricing Model (CAPM, Markowitz (1959), Sharpe
(1964) and Lintner (1965)), a model formulated as a regression of individual asset’s excess returns on
the excess return of the market. More general specifications with multiple regressors are motivated by
the Intertemporal CAPM (ICAPM, Merton (1973)) and Arbitrage Pricing Theory (APT, Ross (1976)).

The basic model postulates that excess returns are linearly related to a set of systematic risk
factors. The factors can be returns on other assets, such as the market portfolio, or any other variable
related to intertemporal hedging demands, such as interest rates, shocks to inflation, or consumption
growth.

Ri−R f
i = fiβ + εi

or more compactly,

re
i = fiβ + εi

where Re
i = Ri−R f

i is the excess return on the asset and fi = [F1,i, . . . ,Fk,i] are returns on factors that
explain systematic variation.

Linear factors models have been used in countless studies, the most well known by Fama and
French (Fama and French (1992) and Fama and French (1993)) who use returns on specially con-
structed portfolios as factors to capture specific types of risk. The data set contains the variables listed
in table 3.1.

Monthly data from July 1963 until January 2020 is used in the examples. Except for the interest
rates, all return data are from the CRSP database. Returns are calculated as 100 times the logarithmic
price difference (Ri = 100(ln(Pi)− ln(Pi−1))). Portfolios were constructed by sorting the firms into
categories based on market capitalization, Book Equity to Market Equity (BE/ME), or past returns
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Variable Description

VWM Returns on a value-weighted portfolio of all NYSE, AMEX and NASDAQ
stocks

SMB Returns on the Small minus Big factor, a zero investment portfolio that
is long small market capitalization firms and short big caps.

HML Returns on the High minus Low factor, a zero investment portfolio that
is long high BE/ME firms and short low BE/ME firms.

MOM Returns on a portfolio that is long winners and short losers as defined
by their performance over the past 12 months, excluding the last month.
Includes the large and small cap stocks but excludes mid-cap stocks.

SL Returns on a portfolio of small cap and low BE/ME firms.
SM Returns on a portfolio of small cap and medium BE/ME firms.
SH Returns on a portfolio of small cap and high BE/ME firms.
BL Returns on a portfolio of big cap and low BE/ME firms.

BM Returns on a portfolio of big cap and medium BE/ME firms.
BH Returns on a portfolio of big cap and high BE/ME firms.
RF Risk free rate (Rate on a 3 month T-bill).

DAT E Date in format YYYYMM.

Table 3.1: Variable description for the data available in the Fama-French data-set used throughout this
chapter.

over the previous year. For further details on the construction of portfolios, see Fama and French
(1993) or Ken French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html.

A general model for the BH portfolio can be specified

BHi−RFi = β1 +β2(VWMi−RFi)+β3SMBi +β4HMLi +β5MOMi + εi

or, in terms of the excess returns,

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi.

The coefficients in the model can be interpreted as the effect of a change in one variable holding
the other variables constant. For example, β3 captures the effect of a change in the SMBi risk factor
holding VWMe

i , HMLi and MOMi constant. Table 3.2 contains some descriptive statistics of the
factors and the six portfolios included in this data set.

3.2 Functional Form

A linear relationship is fairly specific and, in some cases, restrictive. It is important to distinguish
specifications that can be examined in the linear regression framework from those that cannot. Linear

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Mean Std. Dev. Skewness Kurtosis

VWMe 6.66 15.42 -0.54 4.91
SMB 2.17 10.52 0.43 7.83
HML 3.06 9.95 0.01 5.41
MOM 7.95 14.52 -1.28 13.20
SLe 6.54 23.55 -0.39 4.74
SMe 10.21 18.93 -0.54 5.81
SHe 11.23 19.69 -0.53 6.80
BLe 6.78 15.94 -0.34 4.84
BMe 6.47 14.87 -0.48 5.39
BHe 8.22 17.20 -0.62 6.23

Table 3.2: Descriptive statistics of the six portfolios that will be used throughout this chapter. The
data consist of monthly observations from January 1927 until June 2008 (n = 978).

regressions require two key features of any model: each term on the right-hand side must have only
one coefficient that enters multiplicatively, and the error must enter additively.1 Most specifications
satisfying these two requirements can be treated using the tools of linear regression.2 Other forms of
“nonlinearities” are permissible. Any regressor or the regressand can be nonlinear transformations of
the original observed data.

Double log (also known as log-log) specifications, where both the regressor and the regressands
are log transformations of the original (positive) data, are frequently used.

lnYi = β1 +β2 lnXi + εi.

In the parlance of linear regression, the model is specified

Ỹi = β1 +β2X̃i + εi

where Ỹi = ln(Yi) and X̃i = ln(Xi). The usefulness of the double log specification can be illustrated by
a Cobb-Douglas production function subject to a multiplicative shock

Yi = β1Kβ2
i Lβ3

i εi.

Using the production function directly, it is not obvious that, given values for output (Yi), capital (Ki)
and labor (Li) of firm i, the model is consistent with a linear regression. However, taking logs,

lnYi = lnβ1 +β2 lnKi +β3 lnLi + lnεi

the model can be reformulated as a linear regression on the transformed data. Other forms, such as
semi-log (either log-lin, where the regressand is logged but the regressors are unchanged, or lin-log,
which logs only the regressor), are often useful to describe nonlinear relationships.

1A third but obvious requirement is that neither Yi nor any of the X j,i may be latent (unobservable), j = 1,2, . . . ,k,
i = 1,2, . . . ,n.

2There are further requirements on the data, both the regressors and the regressand, to ensure that estimators of the
unknown parameters are reasonable, but these are treated in subsequent sections.
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Linear regression does, however, rule out specifications that may be of interest. Linear regression
is not an appropriate framework to examine a model of the form Yi = β1Xβ2

1,i + β3Xβ4
2,i + εi. Fortu-

nately, more general frameworks, such as the generalized method of moments (GMM) or maximum
likelihood estimation (MLE), topics of subsequent chapters, can be applied.

Two other transformations of the original data, dummy variables and interactions, are commonly
used to generate nonlinear (in regressors) specifications. A dummy variable is a special class of re-
gressor that takes the value 0 or 1. In finance, dummy variables (or dummies) are used to model
calendar effects, leverage (where the magnitude of a coefficient depends on the sign of the regressor),
or group-specific effects. Variable interactions parameterize nonlinearities into a model through prod-
ucts of regressors. Common interactions include powers of regressors (X2

1,i,X
3
1,i, . . .), cross-products

of regressors (X1,iX2,i) and interactions between regressors and dummy variables. Variable transfor-
mations add significant flexibility to the linear regression models.

The use of nonlinear transformations also changes the interpretation of the regression coefficients.
If only unmodified regressors are included,

Yi = xiβ + εi

then ∂Yi
∂Xk,i

= βk. Suppose a specification includes both Xi and X2
i as regressors,

Yi = β1Xi +β2X2
i + εi

In this specification, ∂Yi
∂Xi

= β1 +β2Xi and the level of the variable enters its partial effect. Similarly,
in a simple double log model

lnYi = β1 lnXi + εi,

and

β1 =
∂ lnYi

∂ lnXi
=

∂Y
Y

∂X
X

=
%∆Y
%∆X

Thus, β1 corresponds to the elasticity of Yi with respect to Xi. In general, the coefficient on a variable
that enters the model in in levels corresponds to the effect of a one-unit change in that variable. The
coefficient on a variable that appears logged corresponds to the effect of a one percent change in that
variable. For example, in a semi-log model where only the regressor is logged,

Yi = β1 lnXi + εi,

β1 will correspond to a unit change in Yi for a % change in Xi. Finally, in the case of discrete regressors,
where there is no differential interpretation of coefficients, β represents the effect of a whole unit
change, such as a dummy going from 0 to 1.

3.2.1 Example: Dummy variables and interactions in cross-section re-
gressions

The January and the December effects are seasonal phenomena that have been widely studied in
finance. Simply put, the December effect hypothesizes that returns in December are unusually low
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due to tax-induced portfolio rebalancing, mostly to realized losses, while the January effect stipulates
returns are abnormally high as investors return to the market. To model excess returns on a portfolio
(BHe

i ) as a function of the excess market return (VWMe
i ), a constant, and the January and December

effects, a model can be specified

BHe
i = β1 +β2VWMe

i +β3I1i +β4I12i + εi

where I1i = 1 if the return was generated in January and I12i = 1 in December. The model can be
reparameterized into three cases:

BHe
i = (β1 +β3)+β2VWMe

i + εi January
BHe

i = (β1 +β4)+β2VWMe
i + εi December

BHe
i = β1 +β2VWMe

i + εi Otherwise

Dummy interactions can be used to produce models that have both different intercepts and different
slopes in January and December,

BHe
i = β1 +β2VWMe

i +β3I1i +β4I12i +β5I1iVWMe
i +β6I12iVWMe

i + εi.

If excess returns on a portfolio were nonlinearly related to returns on the market, a simple model
could be specified

BHe
i = β1 +β2VWMe

i +β3(VWMe
i )

2 +β4(VWMe
i )

3 + εi.

Dittmar (2002) proposed a similar model to explain the cross-sectional dispersion of expected returns.

3.3 Estimation

Linear regression is also known as ordinary least squares (OLS) or simply least squares. The least-
squares estimator minimizes the squared distance between the fit line (or plane if there are multiple
regressors) and the regressand. The parameters are estimated as the solution to

min
β

(y−Xβ )′(y−Xβ ) = min
β

n∑
i=1

(Yi−xiβ )
2. (3.6)

First-order conditions of this optimization problem are

−2X′(y−Xβ ) =−2
(
X′y−X′Xβ

)
=−2

n∑
i=1

xi(Yi−xiβ ) = 0 (3.7)

and rearranging, the least-squares estimator for β can be analytically derived.

Definition 3.1 (OLS Estimator). The ordinary least-squares estimator, denoted β̂ , is defined

β̂ = (X′X)−1X′y. (3.8)
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This estimator is only reasonable if X′X is invertible, which is equivalent to the condition that
rank(X) = k. This requirement states that no column of X can be exactly expressed as a combination
of the k−1 remaining columns and that the number of observations is at least as large as the number
of regressors (n ≥ k). This is a weak condition and is trivial to verify in most econometric software
packages: using a less than full rank matrix will generate a warning or error.

Dummy variables create one further issue worthy of special attention. Suppose dummy variables
corresponding to the four quarters of the year, I1i, . . . , I4i, are constructed from a quarterly data set of
portfolio returns. Consider a simple model with a constant and all four dummies

Ri = β1 +β2I1i +β3I2i +β4I3i +β5I4i + εi.

It is not possible to estimate this model with all four dummy variables and the constant because
the constant is a perfect linear combination of the dummy variables, and so the regressor matrix
would be rank deficient. The solution is to exclude either the constant or one of the dummy variables.
The choice of variable to exclude makes no difference in estimation, and only the interpretation of
the estimated coefficients changes. In the case where the constant is excluded, the coefficients on
the dummy variables are directly interpretable as quarterly average returns. If one of the dummy
variables is excluded, for example, the first quarter dummy variable, the interpretation changes. In
this parameterization,

Ri = β1 +β2I2i +β3I3i +β4I4i + εi,

β1 is the average return in Q1, while β1 +β j is the average return in Q j.
It is also important that any regressor, other than the constant, be nonconstant. Suppose a regres-

sion that included the number of years since public floatation is fitted on a data set that contains only
assets that have been trading for exactly 10 years. Including both this regressor and a constant results
in perfect collinearity, but, more importantly, without variability in a regressor, it is impossible to
determine whether changes in the regressor (years since float) results in a change in the regressand
or whether the effect is simply constant across all assets. The role that that variability of regressors
plays in estimating model parameters will be revisited when studying the statistical properties of β̂ .

The second derivative matrix of the minimization,

2X′X,

ensures that the solution must be a minimum as long as X′X is positive definite, which is equivalent
to a condition that rank(X) = k.

Once the regression coefficients have been estimated, it is useful to define the fit values, ŷ =
Xβ̂ and sample residuals ε̂ = y− ŷ = y−Xβ̂ . Rewriting the first-order condition in terms of the
explanatory variables and the residuals provides insight into the numerical properties of the residuals.
An equivalent first-order condition to eq. (3.7) is

X′ε̂ = 0. (3.9)

This set of linear equations is commonly referred to as the normal equations or orthogonality con-
ditions. This set of conditions requires that ε̂ is outside the span of the columns of X. Moreover,
considering the columns of X separately, X′jε̂ = 0 for all j = 1,2, . . . ,k. When a column contains a
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constant (an intercept in the model specification), ι ′ε̂ = 0 (
∑n

i=1 ε̂i = 0), and the mean of the residuals
will be exactly 0.3

The OLS estimator of the residual variance, σ̂2, can be defined.4

Definition 3.2 (OLS Variance Estimator). The OLS residual variance estimator, denoted σ̂2, is de-
fined

σ̂
2 =

ε̂
′
ε̂

n− k
(3.10)

Definition 3.3 (Standard Error of the Regression). The standard error of the regression is defined as

σ̂ =
√

σ̂2 (3.11)

The least-squares estimator has two final noteworthy properties. First, nonsingular transforma-
tions of X and non-zero scalar transformations of Y have deterministic effects on the estimated re-
gression coefficients. Suppose A is a k by k nonsingular matrix, and c is a non-zero scalar. The
coefficients of a regression of cYi on xiA are

β̃ = [(XA)′(XA)]−1(XA)′(cy) (3.12)

= c(A′X′XA)−1A′X′y
= cA−1(X′X)−1A′−1A′X′y
= cA−1(X′X)−1X′y

= cA−1
β̂ .

Second, as long as the model contains a constant, the regression coefficients on all terms except
the intercept are unaffected by adding an arbitrary constant to either the regressor or the regressands.
Consider transforming the standard specification,

Yi = β1 +β2X2,i + . . .+βkXk,i + εi

to

Ỹi = β1 +β2X̃2,i + . . .+βkX̃k,i + εi

where Ỹi = Yi + cy and X̃ j,i = X j,i + cx j . This model is identical to

Yi = β̃1 +β2X2,i + . . .+βkXk,i + εi

where β̃1 = β1 + cy−β2cx2− . . .−βkcxk .

3ι is an n by 1 vector of 1s.
4The choice of n− k in the denominator will be made clear once the properties of this estimator have been examined.



138 Analysis of Cross-Sectional Data

Constant VWMe SMB HML MOM σ̂

SLe -0.15 1.09 1.02 -0.26 -0.03 0.99
SMe 0.08 0.96 0.82 0.35 -0.00 0.77
SHe 0.05 1.00 0.87 0.69 -0.00 0.56
BLe 0.12 0.99 -0.15 -0.28 -0.00 0.69
BMe -0.05 0.98 -0.13 0.31 -0.00 1.15
BHe -0.09 1.08 0.00 0.76 -0.04 1.06

Table 3.3: Estimated regression coefficients from the model Rpi
i = β1 + β2VWMe

i + β3SMBi +
β4HMLi +β5MOMi + εi, where Rpi

i is the excess return on one of the six size and value sorted port-
folios. The final column contains the standard error of the regression.

3.3.1 Estimation of Cross-Section regressions of returns on factors

Table 3.3 contains the estimated regression coefficients as well as the standard error of the regression
for the six portfolios in the Fama-French data set in a specification that includes all four factors
and a constant. There has been a substantial decrease in the magnitude of the standard error of the
regression relative to the standard deviation of the original data. The next section will formalize how
this reduction is interpreted.

3.4 Assessing Fit

Once the parameters have been estimated, the next step is to determine whether the model fits the data.
The minimized sum of squared errors, the optimization’s objective, is an obvious choice to assess fit.
However, there is an important drawback to using the sum of squared errors: changes in the scale of
Yi alter the minimized sum of squared errors without changing the fit. It is necessary to distinguish
between the portions of y explained by X from those that are not to construct a scale-free metric.

The projection matrix, PX, and the annihilator matrix, MX, are useful when decomposing the
regressand into the explained component and the residual.

Definition 3.4 (Projection Matrix). The projection matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the space spanned by X, denoted PX, is defined

PX = X(X′X)−1X′ (3.13)

Definition 3.5 (Annihilator Matrix). The annihilator matrix, a symmetric idempotent matrix that pro-
duces the projection of a variable onto the null space of X′, denoted MX, is defined

MX = In−X(X′X)−1X′. (3.14)

These two matrices have some desirable properties. Both the fited value of y (ŷ) and the estimated
errors, ε̂ , can be expressed in terms of these matrices as ŷ = PXy and ε̂ = MXy, respectively. These
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matrices are also idempotent: PXPX = PX and MXMX = MX and orthogonal: PXMX = 0. The pro-
jection matrix returns the portion of y that lies in the linear space spanned by X, while the annihilator
matrix returns the portion of y in the null space of X. In essence, MX annihilates any portion of y
explainable by X, leaving only the residuals.

Decomposing y using the projection and annihilator matrices,

y = PXy+MXy

which follows since PX +MX = In. The squared observations can be decomposed

y′y = (PXy+MXy)′(PXy+MXy)
= y′PXPXy+y′PXMXy+y′MXPXy+y′MXMXy
= y′PXy+0+0+y′MXy
= y′PXy+y′MXy

noting that PX and MX are idempotent and PXMX = 0n. These three quantities are often referred to
as5

y′y =
n∑

i=1

Y 2
i Uncentered Total Sum of Squares (TSSU ) (3.15)

y′PXy =
n∑

i=1

(xiβ̂ )
2 Uncentered Regression Sum of Squares (RSSU) (3.16)

y′MXy =
n∑

i=1

(Yi−xiβ̂ )
2 Uncentered Sum of Squared Errors (SSEU). (3.17)

Dividing through by y′y

y′PXy
y′y

+
y′MXy

y′y
= 1

or

RSSU

TSSU
+

SSEU

TSSU
= 1.

This identity expresses the scale-free total variation in y that is captured by X (y′PXy) and that
which is not (y′MXy). The portion of the total variation explained by X is known as the uncentered
R2 (R2

U),

5There is no consensus about the names of these quantities. In some texts, the component capturing the fit portion
is known as the Regression Sum of Squares (RSS) while in others, it is known as the Explained Sum of Squares (ESS),
while the portion attributable to the errors is known as the Sum of Squared Errors (SSE), the Sum of Squared Residuals
(SSR), the Residual Sum of Squares (RSS) or the Error Sum of Squares (ESS). The choice to use SSE and RSS in this
text was to ensure the reader that SSE must be the component of the squared observations relating to the error variation.
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Definition 3.6 (Uncentered R2(R2
U)). The uncentered R2, which is used in models that do not include

an intercept, is defined

R2
U =

RSSU

TSSU
= 1− SSEU

TSSU
(3.18)

While R2
U is scale-free, it suffers from one shortcoming. Suppose a constant is added to y so that

the TSSU changes to (y+ c)′(y+ c). The identity still holds, and so (y+ c)′(y+ c) must increase
(for a sufficiently large c). In turn, one of the right-hand side variables must also grow larger. In the
usual case where the model contains a constant, the increase will occur in the RSSU (y′PXy), and as c
becomes arbitrarily large, uncentered R2 will asymptote to one. A centered measure computed using
deviations from the mean rather than on levels overcomes this limitation.

Let ỹ = y− ȳ = Mιy where Mι = In− ι(ι ′ι)−1ι ′ is matrix which subtracts the mean from a vector
of data. Then

y′MιPXMιy+y′MιMXMιy = y′Mιy
y′MιPXMιy

y′Mιy
+

y′MιMXMιy
y′Mιy

= 1

or more compactly

ỹ′PXỹ
ỹ′ỹ

+
ỹ′MXỹ

ỹ′ỹ
= 1.

Centered R2 (R2
C) is defined analogously to uncentered replacing the uncentered sums of squares

with their centered counterparts.

Definition 3.7 (Centered R2(R2
C)). The uncentered R2, used in models that include an intercept, is

defined
R2

C =
RSSC

TSSC
= 1− SSEC

TSSC
(3.19)

where

y′Mιy =

n∑
i=1

(Yi− Ȳ )2 Centered Total Sum of Squares (TSSC) (3.20)

y′MιPXMιy =

n∑
i=1

(xiβ̂ − x̄β̂ )2 Centered Regression Sum of Squares (RSSC) (3.21)

y′MιMXMιy =
n∑

i=1

(Yi−xiβ̂ )
2 Centered Sum of Squared Errors (SSEC). (3.22)

and where x̄ = n−1∑n
i=1 xi.

The expressions R2, SSE, RSS, and TSS should be assumed to correspond to the centered version
unless further qualified. With two versions of R2 available that generally differ, which should be
used? Centered should be used if the model is centered (contains a constant), and uncentered should
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be used when it does not. Failing to select the correct R2 can lead to incorrect conclusions about the
model’s fit, and mixing the definitions can lead to a nonsensical R2 that falls outside of [0,1]. For
instance, computing R2 using the centered version when the model does not contain a constant often
results in a negative value when

R2 = 1− SSEC

TSSC
.

Most software will return centered R2, and caution is warranted if a model is fit without a constant.
R2 does have some caveats. First, adding an additional regressor will always (weakly) increase

the R2 since the sum of squared errors cannot increase by the inclusion of an additional regressor.
This renders R2 useless in discriminating between two models where one is nested within the other.
One solution to this problem is to use the degree of freedom adjusted R2.

Definition 3.8 (Adjusted R2
(

R̄2
)

). The adjusted R2, which adjusts for the number of estimated
parameters, is defined

R̄2
= 1−

SSE
n−k
TSS
n−1

= 1− SSE
TSS

n−1
n− k

. (3.23)

R̄2 will increase if the reduction in the SSE is large enough to compensate for a loss of one degree of
freedom, captured by the n− k term. However, if the SSE does not change, R̄2 will decrease. R̄2 is
preferable to R2 for comparing models, although the topic of model selection will be more formally
considered at the end of this chapter. R̄2, like R2, should be constructed from the appropriate versions
of the RSS, SSE, and TSS (either centered or uncentered).

Second, R2 is not invariant to changes in the regressand. A frequent mistake is to use R2 to
compare the fit from two models with different regressands, for instance, Yi and ln(Yi). These numbers
are incomparable, and this type of comparison must be avoided. Moreover, R2 is even sensitive to
more benign transformations. Suppose a simple model is postulated,

Yi = β1 +β2Xi + εi,

and a model logically consistent with the original model,

Yi−Xi = β1 +(β2−1)Xi + εi,

is estimated. The R2s from these models will generally differ. For example, suppose the original
coefficient on xi was 1. Subtracting xi will reduce the explanatory power of xi to 0, rendering it
useless and resulting in a R2 of 0 irrespective of the R2 in the original model.

3.4.1 Example: R2 and R̄2 in Cross-Sectional Factor models

To illustrate the use of R2, consider alternative models of BHe that include one or more risk factors.
The R2 values in the top half of Table 3.4 show that R2 never declines as additional variables are
added. Note that the adjusted measure of fit, R̄2

U, also never declines, although it grows more slowly.
The monotonic pattern occurs since the adjustment penalty is small when the sample size n is large,
as is the case here. The table only shows the correct version of the R2 – centered for models that
contain a constant and uncentered for those that do not.
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Regressand Regressors R2
U R̄2

U R2
C R̄2

C

BHe 1, V MEe 0.7620 0.7616 – –
BHe 1, V MEe, SMB 0.7644 0.7637 – –
BHe 1, V MEe, SMB, HML 0.9535 0.9533 – –
BHe 1, V MEe, SMB, HML, MOM 0.9543 0.9541 – –
BHe VWMe – – 0.7656 0.7653
10+BHe 1, V MEe 0.7620 0.7616 – –
10+BHe V MEe – – 0.2275 0.2264
10×BHe 1, V MEe 0.7620 0.7616 – –
10×BHe V MEe – – 0.7656 0.7653
BHe−V MEe 1, V MEe 0.0024 0.0009 – –∑

Y BHe 1,
∑

Y V MEe 0.6800 0.6743 – –

Table 3.4: Centered and uncentered R2 and R̄2 from models with regressor or regressand changes.
Only the correct version of the R2 is shown – centered for models that contain a constant as indicated
by 1 in the regressor list, or uncentered for models that do not. The top rows demonstrate how R2 and
its adjusted version change as additional variables are added. The bottom two rows demonstrate how
changes in the regressand – the left-hand-side variable – affect the R2.

The bottom half of the table shows how R2 changes when the regressand changes. The R2 in
models that include a constant are invariant to constant shifts in the regressand. The R2

U of the model
that regresses 10+BHe on a constant and the excess market is identical to the same model only using
BHe. This relationship does not hold for models that do not contain a constant and R2

C changes when
10 is added to the return. Both measures are invariant to multiplicative adjustments. The penultimate
line shows that R2 is not invariant to changes in the regressand that do not fundamentally alter the
interpretation of the model. In this model, the difference in returns, BHe−V MW e, is regressed on a
constant and the excess market. The coefficient on the excess market, γ̂2, in this model

BHe
i −VWMe = γ1 + γ2VWMe

i + εi.

will be exactly 1 less than the coefficient in the model

BHe
i = β1 +β2VWMe

i + εi.

While these two models are conceptually identical and describe the same relationship between BHe,
the R2 changes. In this example, the coefficient on VWMein near zero since the coefficient in the
original specification is near 1. The R2 of the return difference is near 0 even though the market is
an important determinant of the the Big-High portfolio’s return. The final line shows the regression
coefficient of the annual return of BHe (

∑
Y BHe) on the annual return on the market (

∑
Y VWMe).

This type of aggregation also changes the R2. These final two results highlight a common form of
misuse of R2: do not compare the values of R2 in models with different regressands.
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3.5 Assumptions

Thus far, all of the derivations and identities presented are purely numerical. They do not indicate
whether β̂ is a reasonable way to estimate β . It is necessary to make some assumptions about the
innovations and the regressors to provide a statistical interpretation of β̂ . Two broad classes of as-
sumptions can be used to analyze the behavior of β̂ : the classical framework (also known as the
small-sample or finite-sample framework) and asymptotic analysis (also known as the large-sample
framework).

Neither method is ideal. The small-sample framework is precise in that the exact distribution of
regressors and test statistics are known. This precision comes at the cost of many restrictive assump-
tions – assumptions not usually plausible in financial applications. On the other hand, asymptotic
analysis requires few restrictive assumptions and is broadly applicable to financial data, although the
results are only exact if the number of observations is infinite. Asymptotic analysis is still useful for
examining the behavior in finite samples when the sample size is large enough for the asymptotic
distribution to approximate the finite-sample distribution reasonably well.

This leads to the most important question of asymptotic analysis: How large does n need to be
before the approximation is reasonable? Unfortunately, the answer to this question is “it depends”. In
simple cases, where residuals are independent and identically distributed, as few as 30 observations
may be sufficient for the asymptotic distribution to be a good approximation to the finite-sample
distribution. In more complex cases, anywhere from 100 to 1,000 may be needed, while in the extreme
cases, where the data is heterogenous and highly dependent, an asymptotic approximation may be
poor with more than 1,000,000 observations.

The properties of β̂ will be examined under both sets of assumptions. While the small-sample
results are not generally applicable, it is important to understand these results as the lingua franca of
econometrics, as well as the limitations of tests based on the classical assumptions, and to be able
to detect when a test statistic may not have the intended asymptotic distribution. Six assumptions
are required to examine the finite-sample distribution of β̂ and establish the optimality of the OLS
procedure( although many properties only require a subset).

Assumption 3.1 (Linearity). Yi = xiβ + εi

This assumption states the obvious condition necessary for least squares to be a reasonable method
to estimate the β . It further imposes a less obvious condition, that xi must be observed and measured
without error. Many applications in financial econometrics include latent variables. Linear regression
is not applicable in these cases and a more sophisticated estimator is required. In other applications,
the true value of xk,i is not observed and a noisy proxy must be used, so that x̃k,i = xk,i+νk,i where νk,i
is an error uncorrelated with xk,i. When this occurs, ordinary least-squares estimators are misleading
and a modified procedure (two-stage least squares (2SLS) or instrumental variable regression (IV))
must be used.

Assumption 3.2 (Conditional Mean). E[εi|X] = 0, i = 1,2, . . . ,n

This assumption states that the mean of each εi is zero given any Xk,i, any function of any Xk,i
or combinations of these. It is stronger than the assumption used in the asymptotic analysis and is
not valid in many applications (e.g., time-series data). When the regressand and regressor consist of
time-series data, this assumption may be violated and E[εi|xi+ j] 6= 0 for some j. This assumption also
implies that the correct form of Xk,i enters the regression, that E[εi] = 0 (through a simple application
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of the law of iterated expectations), and that the innovations are uncorrelated with the regressors, so
that E[εi′x j,i] = 0, i′ = 1,2, . . . ,n, i = 1,2, . . . ,n, j = 1,2, . . . ,k.

Assumption 3.3 (Rank). The rank of X is k with probability 1.

This assumption is needed to ensure that β̂ is identified and can be estimated. In practice, it
requires that the no regressor is perfectly co-linear with the others, that the number of observations
is at least as large as the number of regressors (n ≥ k) and that variables other than a constant have
non-zero variance.

Assumption 3.4 (Conditional Homoskedasticity). V[εi|X] = σ2

Homoskedasticity is rooted in homo (same) and skedannumi (scattering) and in modern English
means that the residuals have identical variances. This assumption is required to establish the opti-
mality of the OLS estimator and it specifically rules out the case where the variance of an innovation
is a function of a regressor.

Assumption 3.5 (Conditional Correlation). E[εiε j|X] = 0, i = 1,2, . . . ,n, j = i+1, . . . ,n

Assuming the residuals are conditionally uncorrelated is convenient when coupled with the ho-
moskedasticity assumption, and the residuals covariance is σ2In. Like homoskedasticity, this assump-
tion is needed for establishing the optimality of the least-squares estimator.

Assumption 3.6 (Conditional Normality). ε|X∼ N(0,Σ)

Assuming a specific distribution is very restrictive – results based on this assumption will only be
correct is the errors are actually normal – but this assumption allows for precise statements about the
finite-sample distribution of β̂ and test statistics. This assumption, when combined with assumptions
3.4 and 3.5, provides a simple distribution for the innovations: εi|X d→ N(0,σ2).

3.6 Small-Sample Properties of OLS estimators

Using these assumptions, many useful properties of β̂ can be derived. Recall that β̂ = (X′X)−1X′y.

Theorem 3.1 (Bias of β̂ ). Under assumptions 3.1 - 3.3

E[β̂ |X] = β . (3.24)

While unbiasedness is a desirable property, it is not particularly meaningful without further quali-
fication. For instance, an estimator which is unbiased, but does not increase in precision as the sample
size increases is generally not desirable. Fortunately, β̂ is not only unbiased, it has a variance that
goes to zero.

Theorem 3.2 (Variance of β̂ ). Under assumptions 3.1 - 3.5

V[β̂ |X] = σ
2(X′X)−1. (3.25)



3.6 Small-Sample Properties of OLS estimators 145

Under the conditions necessary for unbiasedness for β̂ , plus assumptions about homoskedasticity
and the conditional correlation of the residuals, the form of the variance is simple. Consistency
follows since

(X′X)−1 =

(
n
∑n

i=1 x′ixi

n

)−1

(3.26)

≈ 1
n

E
[
x′ixi
]−1

will be declining as the sample size increases.
However, β̂ has an even stronger property under the same assumptions. It is BLUE: Best L inear

Unbiased Estimator. Best, in this context, means that it has the lowest variance among all other linear
unbiased estimators. While this is a strong result, a few words of caution are needed to properly
interpret this result. The class of Linear Unbiased Estimators (LUEs) is small in the universe of all
unbiased estimators. Saying OLS is the “best” is akin to a one-armed boxer claiming to be the best
one-arm boxer. While possibly true, she probably would not stand a chance against a two-armed
opponent.

Theorem 3.3 (Gauss-Markov Theorem). Under assumptions 3.1-3.5, β̂ is the minimum variance
estimator among all linear unbiased estimators. That is V[β̃ |X] - V[β̂ |X] is positive semi-definite
where β̃ = Cy, E[β̃ ] = β and C 6= (X′X)

−1 X′.
Letting β̃ be any other linear, unbiased estimator of β , it must have a larger covariance. However,

many estimators, including most maximum likelihood estimators, are nonlinear and so are not neces-
sarily less efficient. Finally, making use of the normality assumption, it is possible to determine the
conditional distribution of β̂ .

Theorem 3.4 (Distribution of β̂ ). Under assumptions 3.1 – 3.6,

β̂ |X∼ N(β ,σ2(X′X)−1) (3.27)

Theorem 3.4 should not be surprising. β̂ is a linear combination of (jointly) normally distributed
random variables and thus is also normally distributed. Normality is also useful for establishing the
relationship between the estimated residuals ε̂ and the estimated parameters β̂ .

Theorem 3.5 (Conditional Independence of ε̂ and β̂ ). Under assumptions 3.1 - 3.6, ε̂ is independent
of β̂ , conditional on X.

One implication of this theorem is that Cov(ε̂i, β̂ j|X) = 0 i= 1,2, . . . ,n, j = 1,2, . . . ,k. As a result,
functions of ε̂ will be independent of functions of β̂ , a property useful in deriving distributions of test
statistics that depend on both. Finally, in the small-sample setup, the exact distribution of the sample
error variance estimator, σ̂2 = ε̂

′
ε̂/(n− k), can be derived.

Theorem 3.6 (Distribution of σ̂2).

(n− k)
σ̂2

σ2 ∼ χ
2
n−k

where σ̂2 = y′MXy
n−k = ε̂

′
ε̂

n−k .

Since ε̂i is a normal random variable, once it is standardized and squared, it should be a χ2
1 . The

change in the divisor from n to n− k reflects the loss in degrees of freedom due to the k estimated
parameters.



146 Analysis of Cross-Sectional Data

3.7 Maximum Likelihood

Once the assumption that the innovations are conditionally normal has been made, conditional max-
imum likelihood is an obvious method to estimate the unknown parameters (β ,σ2). Conditioning
on X, and assuming the innovations are normal, homoskedastic, and conditionally uncorrelated, the
likelihood is given by

f (y|X;β ,σ2) = (2πσ
2)−

n
2 exp

(
−(y−Xβ )′(y−Xβ )

2σ2

)
(3.28)

and, taking logs, the log likelihood

l(β ,σ2;y|X) =−n
2

log(2π)− n
2

log(σ2)− (y−Xβ )′(y−Xβ )

2σ2 . (3.29)

Recall that the logarithm is a monotonic, strictly increasing transformation, and the extremum points
of the log-likelihood and the likelihood will occur at the same parameters. Maximizing the likelihood
with respect to the unknown parameters, there are k+1 first-order conditions

∂ l(β ,σ2;y|X)

∂β
=

X′(y−Xβ̂ )

σ2 = 0 (3.30)

∂ l(β ,σ2;y|X)

∂ σ̂2 =− n
2σ̂2 +

(y−Xβ̂ )′(y−Xβ̂ )

2σ̂4 = 0. (3.31)

The first set of conditions is identical to the first-order conditions of the least-squares estimator ignor-
ing the scaling by σ2, assumed to be greater than 0. The solution is

β̂
MLE

= (X′X)−1X′y (3.32)

σ̂
2 MLE = n−1(y−Xβ̂ )′(y−Xβ̂ ) = n−1

ε̂
′
ε̂. (3.33)

The regression coefficients are identical under maximum likelihood and OLS, although the divisor in
σ̂2 and σ̂2 MLE differ.

It is important to note that the derivation of the OLS estimator does not require an assumption of
normality. Moreover, the unbiasedness, variance, and BLUE properties do not rely on the conditional
normality of residuals. However, if the innovations are homoskedastic, uncorrelated and normal, the
results of the Gauss-Markov theorem can be strengthened using the Cramer-Rao lower bound.

Theorem 3.7 (Cramer-Rao Inequality). Let f (z;θ) be the joint density of z where θ is a k dimensional
parameter vector Let θ̂ be an unbiased estimator of θ 0 with finite covariance. Under some regularity
condition on f (·)

V[θ̂ ]≥ I−1(θ 0)

where

I =−E

[
∂ 2 ln f (z;θ)

∂θ∂θ
′

∣∣∣∣
θ=θ 0

]
(3.34)



3.7 Maximum Likelihood 147

and

J = E

[
∂ ln f (z;θ)

∂θ

∂ ln f (z;θ)

∂θ
′

∣∣∣∣
θ=θ 0

]
(3.35)

and, under some additional regularity conditions,

I(θ 0) = J (θ 0).

The last part of this theorem is the information matrix equality (IME) and when a model is correctly
specified in its entirety, the expected covariance of the scores is equal to negative of the expected
hessian.6 The IME will be revisited in later chapters. The second order conditions,

∂ 2l(β ,σ2;y|X)

∂β∂β
′ =−X′X

σ̂2 (3.36)

∂ 2l(β ,σ2;y|X)

∂β∂σ2 =−X′(y−Xβ )

σ4 (3.37)

∂ 2l(β ,σ2;y|X)

∂ 2σ2 =
n

2σ4 −
(y−Xβ )′(y−Xβ )

σ6 (3.38)

are needed to find the lower bound for the covariance of the estimators of β and σ2. Taking expecta-
tions of the second derivatives,

E
[

∂ 2l(β ,σ2;y|X)

∂β∂β
′

]
=−X′X

σ2 (3.39)

E
[

∂ 2l(β ,σ2;y|X)

∂β∂σ2

]
= 0 (3.40)

E
[

∂ 2l(β ,σ2;y|X)

∂ 2σ2

]
=− n

2σ4 (3.41)

and so the lower bound for the variance of β̂ = β̂
MLE

is σ2(X′X)−1. Theorem 3.2 show that σ2(X′X)−1

is also the variance of the OLS estimator β̂ and so the Gauss-Markov theorem can be strengthened in
the case of conditionally homoskedastic, uncorrelated normal residuals.

Theorem 3.8 (Best Unbiased Estimator). Under assumptions 3.1 - 3.6, β̂ = β̂
MLE

is the best unbiased
estimator of β .

The difference between this theorem and the Gauss-Markov theorem is subtle but important. The
class of estimators is no longer restricted to include only linear estimators and so this result is both
broad and powerful: MLE (or OLS) is an ideal estimator under these assumptions (in the sense that
no other unbiased estimator, linear or not, has a lower variance). This results does not extend to the
variance estimator since E[σ̂2 MLE] = n

n−k σ2 6=σ2, and so the optimality of σ̂2 MLE cannot be established
using the Cramer-Rao theorem.

6There are quite a few regularity conditions for the IME to hold, but discussion of these is beyond the scope of this
course. Interested readers should see White (1996) for a thorough discussion.
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3.8 Small-Sample Hypothesis Testing

Most regressions are estimated to test implications of economic or finance theory. Hypothesis testing
is the mechanism used to determine whether data and theory are congruent. Formalized in terms of
β , the null hypothesis (also known as the maintained hypothesis) is formulated as

H0 : R(β )− r = 0 (3.42)

where R(·) is a function from Rk to Rm, m ≤ k and r is an m by 1 vector. Initially, a subset of all
hypotheses, those in the linear equality hypotheses class, formulated

H0 : Rβ − r = 0 (3.43)

will be examined where R is a m by k matrix. In subsequent chapters, more general test specifications
including nonlinear restrictions on the parameters will be considered. All hypotheses in this class can
be written as weighted sums of the regression coefficients,

R11β1 +R12β2 . . .+R1kβk = r1
R21β1 +R22β2 . . .+R2kβk = r2

...
Rm1β1 +Rm2β2 . . .+Rmkβk = ri

Each constraint is represented as a row in the above set of equations. Linear equality constraints can
be used to test parameter restrictions such as

β1 = 0 (3.44)
3β2 +β3 = 1

k∑
j=1

β j = 0

β1 = β2 = β3 = 0.

For instance, if the unrestricted model is

Yi = β1 +β2X2,i +β3X3,i +β4X4,i +β5X5,i + εi

the hypotheses in eq. (3.44) can be described in terms of R and r as

H0 R r

β1 = 0
[

1 0 0 0 0
]

0

3β2 +β3 = 1
[

0 3 1 0 0
]

1∑k
j=1 β j = 0

[
0 1 1 1 1

]
0

β1 = β2 = β3 = 0

 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

  0
0
0


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When using linear equality constraints, alternatives are specified as H1 : Rβ − r 6= 0. Once both
the null and the alternative hypotheses have been postulated, it is necessary to discern whether the
data are consistent with the null hypothesis. Three classes of statistics will be described to test these
hypotheses: Wald, Lagrange Multiplier and Likelihood Ratio. Wald tests are perhaps the most intu-
itive: they directly test whether Rβ − r is close to zero. Lagrange Multiplier tests incorporate the
constraint into the least-squares problem using a Lagrangian. If the constraint has a small effect on
the minimized sum of squares, the Lagrange multipliers, often described as the shadow price of the
constraint in economic applications, should be close to zero. The magnitude of these forms the basis
of the LM test statistic. Finally, likelihood ratios test whether the data are less likely under the null
than they are under the alternative. If the null hypothesis is not restrictive this ratio should be close to
one and the difference in the log-likelihoods should be small.

3.8.1 t-tests

T-tests can be used to test a single hypothesis involving one or more coefficients,

H0 : Rβ = r

where R is a 1 by k vector and r is a scalar. Recall from theorem 3.4, β̂−β ∼N(0,σ2(X′X)−1). Under
the null, R(β̂ −β ) = Rβ̂ −Rβ = Rβ̂ − r and applying the properties of normal random variables,

Rβ̂ − r ∼ N(0,σ2R(X′X)−1R′).

A simple test can be constructed

z =
Rβ̂ − r√

σ2R(X′X)−1R′
, (3.45)

where z∼ N(0,1). To perform a test with size α , the value of z can be compared to the critical values
of the standard normal and rejected if |z| >Cα where Cα is the 1−α quantile of a standard normal.
However, z is an infeasible statistic since it depends on an unknown quantity, σ2. The natural solution

is to replace the unknown parameter with an estimate. Dividing z by
√

s2

σ2 and simplifying,

t =
z√

s2

σ2

(3.46)

=

Rβ̂−r√
σ2R(X′X)−1R′√

s2

σ2

=
Rβ̂ − r√

s2R(X′X)−1R′
.

Note that the denominator (n− k) s2

σ2 ∼ χ2
n−k, and so t is the ratio of a standard normal to the square

root of a χ2
ν normalized by it standard deviation. As long as the standard normal in the numerator and

the χ2
v are independent, this ratio will have a Student’s t distribution.
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Definition 3.9 (Student’s t distribution). Let z ∼ N(0,1) (standard normal) and let w ∼ χ2
ν where z

and w are independent. Then
z√w

ν

∼ tν . (3.47)

2

The independence of β̂ and s2 – which is only a function of ε̂ – follows from 3.5, and so t has a
Student’s t distribution.

Theorem 3.9 (t-test). Under assumptions 3.1 - 3.6,

Rβ̂ − r√
s2R(X′X)−1R′

∼ tn−k. (3.48)

As ν →∞, the Student’s t distribution converges to a standard normal. As a practical matter,
when ν > 30, the T distribution is close to a normal. While any single linear restriction can be tested
with a t-test , the expression t-stat has become synonymous with a specific null hypothesis.

Definition 3.10 (t-stat). The t-stat of a coefficient, βk, is the t-test value of a test of the null H0 : βk = 0
against the alternative H1 : βk 6= 0, and is computed

β̂k√
s2(X′X)−1

[kk]

(3.49)

where (X′X)−1
[kk] is the kth diagonal element of (X′X)−1.

The previous examples were all two-sided; the null would be rejected if the parameters differed
in either direction from the null hypothesis. The T-test is also unique among these three main classes
of test statistics in that it can easily be applied against both one-sided alternatives and two-sided
alternatives.7

However, there is often a good argument to test a one-sided alternative. For instance, in tests of the
market premium, theory indicates that it must be positive to induce investment. Thus, when testing
the null hypothesis that a risk premium is zero, a two-sided alternative could reject in cases which are
not theoretically interesting. More importantly, a one-sided alternative, when appropriate, will have
more power than a two-sided alternative since the direction information in the null hypothesis can
be used to tighten confidence intervals. The two types of tests involving a one-sided hypothesis are
upper tail tests which test nulls of the form H0 : Rβ ≤ r against alternatives of the form H1 : Rβ > r,
and lower tail tests which test H0 : Rβ ≥ r against H1 : Rβ < r.

Figure 3.1 contains the rejection regions of a t10 distribution. The dark gray region corresponds
to the rejection region of a two-sided alternative to the null that H0 : β̂ = β 0 for a 10% test. The
light gray region, combined with the upper dark gray region corresponds to the rejection region of
a one-sided upper tail test, and so test statistic between 1.372 and 1.812 would be rejected using a
one-sided alternative but not with a two-sided one.

Algorithm 3.1 (t-test).
7Wald, LM, and LR tests can be implemented against one-sided alternatives with considerably more effort.
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Rejection regions of a t10
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Figure 3.1: Rejection region for a t-test of the nulls H0 : β = β 0 (two-sided) and H0 : β ≤ β 0. The two-
sided rejection region is indicated by dark gray while the one-sided (upper) rejection region includes
both the light and dark gray areas in the right tail.

1. Estimate β̂ using least squares.

2. Compute s2 = (n− k)−1∑n
i=1 ε̂2

i and s2(X′X)−1.

3. Construct the restriction matrix, R, and the value of the restriction, r from the null hypothesis.

4. Compute t = Rβ̂−r√
s2R(X′X)−1R′

.

5. Compare t to the critical value, Cα , of the tn−k distribution for a test size with α . In the case of
a two tailed test, reject the null hypothesis if |t|> Ftν (1−α/2) where Ftν (·) is the CDF of a tν -
distributed random variable. In the case of a one-sided upper-tail test, reject if t > Ftν (1−α)
or in the case of a one-sided lower-tail test, reject if t < Ftν (α).

3.8.2 Wald Tests

Wald test directly examines the distance between Rβ and r. Intuitively, if the null hypothesis is true,
then Rβ −r≈ 0. In the small-sample framework, the distribution of Rβ −r follows directly from the
properties of normal random variables. Specifically,



152 Analysis of Cross-Sectional Data

Rβ − r∼ N(0,σ2R(X′X)−1R′)

Thus, to test the null H0 : Rβ − r = 0 against the alternative H0 : Rβ − r 6= 0, a test statistic can be
based on

WInfeasible =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)

σ2 (3.50)

which has a χ2
m distribution.8 However, this statistic depends on an unknown quantity, σ2, and to

operationalize W , σ2 must be replaced with an estimate, s2.

W =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)/m

σ2
σ2

s2 =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)/m

s2
(3.51)

The replacement of σ2 with s2 has an effect on the distribution of the estimator which follows
from the definition of an F distribution.

Definition 3.11 (F distribution). Let z1 ∼ χ2
ν1

and let z2 ∼ χ2
ν2

where z1 and z2 are independent. Then

z1
ν1
z2
ν2

∼ Fν1,ν2 (3.52)

The conclusion that W has a Fm,n−k distribution follows from the independence of β̂ and ε̂ , which
in turn implies the independence of β̂ and s2.

Theorem 3.10 (Wald test). Under assumptions 3.1 - 3.6,

(Rβ − r)′
[
R(X′X)−1R′

]−1
(Rβ − r)/m

s2 ∼ Fm,n−k (3.53)

Analogous to the tν distribution, an Fν1,ν2 distribution converges to a scaled χ2 in large samples
(χ2

ν1
/ν1 as ν2→∞). Figure 3.2 contains failure to reject (FTR) regions for some hypothetical Wald

tests. The shape of the region depends crucially on the correlation between the hypotheses being
tested. For instance, panel (a) corresponds to testing a joint hypothesis where the tests are independent
and have the same variance. In this case, the FTR region is a circle. Panel (d) shows the FTR region
for highly correlated tests where one restriction has a larger variance.

Once W has been computed, the test statistic should be compared to the critical value of an Fm,n−k
and rejected if the test statistic is larger. Figure 3.3 contains the pdf of an F5,30 distribution. Any
W > 2.049 would lead to rejection of the null hypothesis using a 10% test.

The Wald test has a more common expression in terms of the SSE from both the restricted and
unrestricted models. Specifically,

8The distribution can be derived noting that
[
R(X′X)−1R′

]− 1
2 (Rβ−r)∼N

(
0,
[

Im 0
0 0

])
where the matrix square

root makes use of a generalized inverse. A more complete discussion of reduced rank normals and generalized inverses is
beyond the scope of this course.
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Bivariate F distributions
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Figure 3.2: Bivariate plot of an F distribution. The four panels contain the failure-to-reject regions
corresponding to 20, 10 and 1% tests. Panel (a) contains the region for uncorrelated tests. Panel (b)
contains the region for tests with the same variance but a correlation of 0.5. Panel (c) contains the
region for tests with a correlation of -.8 and panel (d) contains the region for tests with a correlation
of 0.5 but with variances of 2 and 0.5 (The test with a variance of 2 is along the x-axis).

W =
SSER−SSEU

m
SSEU
n−k

=
SSER−SSEU

m
s2 . (3.54)

where SSER is the sum of squared errors of the restricted model.9 The restricted model is the original
model with the null hypothesis imposed. For example, to test the null H0 : β2 = β3 = 0 against an
alternative that H1 : β2 6= 0 or β3 6= 0 in a bivariate regression,

Yi = β1 +β2X1,i +β3X2,i + εi (3.55)

9The SSE should be the result of minimizing the squared errors. The centered should be used if a constant is included
and the uncentered versions if no constant is included.
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the restricted model imposes the null,

Yi = β1 +0X1,i +0X2,i + εi

= β1 + εi.

The restricted SSE, SSER is computed using the residuals from this model while the unrestricted
SSE, SSEU, is computed from the general model that includes both X variables (eq. (3.55)). While
Wald tests usually only require the unrestricted model to be estimated, the difference of the SSEs is
useful because it can be computed from the output of any standard regression package. Moreover, any
linear regression subject to linear restrictions can be estimated using OLS on a modified specification
where the constraint is directly imposed. Consider the set of restrictions, R, in an augmented matrix
with r

[R r]
By transforming this matrix into row-echelon form,[

Im R̃ r̃
]

a set of m restrictions can be derived. This also provides a direct method to check whether a set of
constraints is logically consistent and feasible or if it contains any redundant restrictions.

Theorem 3.11 (Restriction Consistency and Redundancy). If
[
Im R̃ r̃

]
is [R r] in reduced ech-

elon form, then a set of restrictions is logically consistent if rank(R̃) = rank(
[
Im R̃ r̃

]
). Addition-

ally, if rank(R̃) = rank(
[
Im R̃ r̃

]
) = m, then there are no redundant restrictions.

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = Ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute W =
SSER−SSEU

m
SSEU
n−k

.

4. Compare W to the critical value, Cα , of the Fm,n−k distribution at size α . Reject the null
hypothesis if W >Cα .

Finally, in the same sense that the t-stat is a test of the null H0 : βk = 0 against the alternative
H1 : βk 6= 0, the F-stat of a regression tests whether all coefficients are zero (except the intercept)
against an alternative that at least one is non-zero.

Definition 3.12 (F-stat of a Regression). The F-stat of a regression is the value of a Wald test that
all coefficients are zero except the coefficient on the constant (if one is included). Specifically, if the
unrestricted model is

Yi = β1 +β2X2,i + . . .βkXk,i + εi,

the F-stat is the value of a Wald test of the null H0 : β2 = β3 = . . . = βk = 0 against the alternative
H1 : β j 6= 0, for j = 2, . . . ,k and corresponds to a test based on the restricted regression

Yi = β1 + εi.
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Rejection region of a F5,30 distribution
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Figure 3.3: Rejection region for a F5,30 distribution when using a test with a size of 10%. If the null
hypothesis is true, the test statistic should be relatively small (would be 0 if exactly true). Large test
statistics lead to rejection of the null hypothesis. In this example, a test statistic with a value greater
than 2.049 would lead to a rejection of the null at the 10% level.

3.8.3 Example: T and Wald Tests in Cross-Sectional Factor models

Returning to the factor regression example, the t-stats in the 4-factor model can be computed

t j =
β̂ j√

s2(X′X)−1
[ j j]

.

For example, consider a regression of BHe on the set of four factors and a constant,

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi

The fit coefficients, t-stats and p-values are contained in table 3.5.

Definition 3.13 (P-value ). The p-value is the smallest test size (α) where the null hypothesis may be
rejected. The p-value can be equivalently defined as the largest size where the null hypothesis cannot
be rejected.
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P-values have the advantage that they are independent of the distribution of the test statistic. For
example, when using a 2-sided t-test, the p-value of a test statistic t is 2(1−Ftν (|t|)) where Ftν (| · |)
is the CDF of a t-distribution with ν degrees of freedom. In a Wald test, the p-value is 1−Ffν1,ν2

(W )
where Ffν1,ν2

(·) is the CDF of an fν1,ν2 distribution.
The critical value, Cα , for a 2-sided 10% t-test with 973 degrees of freedom (n−5) is 1.645, and

so if |t| >Cα the null hypothesis should be rejected, and the results indicate that the null hypothesis
that the coefficients on the constant and SMB are zero cannot be rejected the 10% level. The p-values
indicate the null that the constant was 0 could be rejected at a α of 14% but not one of 13%.

Table 3.5 also contains the Wald test statistics and p-values for a variety of hypotheses, some
economically interesting, such as the set of restrictions that the four factor model reduces to the
CAPM, β j = 0, j = 1,3, . . . ,5. Only one regression, the completely unrestricted regression, was
needed to compute all of the test statistics using Wald tests,

W =
(Rβ − r)′

[
R(X′X)−1R′

]−1
(Rβ − r)

s2

where R and r depend on the null being tested. For example, to test whether a strict CAPM was
consistent with the observed data,

R =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 and r =


0
0
0
0

 .
All of the null hypotheses save one are strongly rejected with p-values of 0 to three decimal places.

The sole exception is H0 : β1 = β3 = 0, which produced a Wald test statistic of 2.05. The 5% critical
value of an F2,973 is 3.005, and so the null hypothesis would be not rejected at the 5% level. The
p-value indicates that the test would be rejected at the 13% level but not at the 12% level. One further
peculiarity appears in the table. The Wald test statistic for the null H0 : β5 = 0 is exactly the square of
the t-test statistic for the same null. This should not be surprising since W = t2 when testing a single
linear hypothesis. Moreover, if z∼ tν , then z2 ∼ F1,ν . This can be seen by inspecting the square of a
tν and applying the definition of an F1,ν -distribution.

3.8.4 Likelihood Ratio Tests

Likelihood Ratio (LR) test are based on the relative probability of observing the data if the null is
valid to the probability of observing the data under the alternative. The test statistic is defined

LR =−2ln

(
maxβ ,σ2 f (y|X;β ,σ2) subject to Rβ = r

maxβ ,σ2 f (y|X;β ,σ2)

)
(3.56)

Letting β̂ R denote the constrained estimate of β , this test statistic can be reformulated
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t-Tests
β̂ s.e.

(
β̂

)
t-stat p-value

Constant -0.086 0.042 -2.04 0.042
VWMe 1.080 0.010 108.7 0.000
SMB 0.002 0.014 0.13 0.893
HML 0.764 0.015 50.8 0.000
MOM -0.035 0.010 -3.50 0.000

Wald Tests
Null Alternative W M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 3558.8 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 956.5 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 10.1 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.08 2 0.126
β5 = 0 β5 6= 0 12.3 1 0.000

Table 3.5: The upper panel contains t-stats and p-values for the regression of Big-High excess returns
on the four factors and a constant. The lower panel contains test statistics and p-values for Wald tests
of the reported null hypothesis. Both sets of tests were computed using the small-sample assumptions
and may be misleading since the residuals are both non-normal and heteroskedastic.

LR =−2ln

(
f (y|X; β̂ R, σ̂

2
R)

f (y|X; β̂ , σ̂2)

)
(3.57)

=−2[l(β̂ R, σ̂
2
R;y|X;)− l(β̂ , σ̂2;y|X)]

= 2[l(β̂ , σ̂2;y|X)− l(β̂ R, σ̂
2
R;y|X)]

In the case of the normal log likelihood, LR can be further simplified to10

LR =−2ln

(
f (y|X; β̂ R, σ̂

2
R)

f (y|X; β̂ , σ̂2)

)

=−2ln

(2πσ̂2
R)
− n

2 exp(− (y−Xβ̂ R)
′(y−Xβ̂ R)

2σ̂2
R

)

(2πσ̂2)−
n
2 exp(− (y−Xβ )′(y−Xβ )

2σ̂2 )


=−2ln

(
(σ̂2

R)
− n

2

(σ̂2)−
n
2

)

=−2ln
(

σ̂2
R

σ̂2

)− n
2

10Note that σ̂2
R and σ̂2 use n rather than a degree-of-freedom adjustment since they are MLE estimators.
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= n
[
ln(σ̂2

R)− ln(σ̂2)
]

= n [ln(SSER)− ln(SSEU)]

Finally, the distribution of the LR statistic can be determined by noting that

LR = n ln
(

SSER

SSEU

)
= N ln

(
σ̂2

R

σ̂2
U

)
(3.58)

and that

n− k
m

[
exp
(

LR
n

)
−1
]
=W. (3.59)

The transformation between W and LR is monotonic so the transformed statistic has the same distri-
bution as W , a Fm,n−k.

Algorithm 3.2 (Small-Sample Wald Test).

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = Ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute LR = n ln
(

SSER
SSEU

)
.

4. Compute W = n−k
m

[
exp
(LR

n

)
−1
]
.

5. Compare W to the critical value, Cα , of the Fm,n−k distribution at size α . Reject the null
hypothesis if W >Cα .

3.8.5 Example: LR Tests in Cross-Sectional Factor models

LR tests require estimating the model under both the null and the alternative. In all examples here,
the alternative is the unrestricted model with four factors while the restricted models (where the null
is imposed) vary. The simplest restricted model corresponds to the most restrictive null, H0 : β j = 0,
j = 1, . . . ,5, and is specified

Yi = εi.

To compute the likelihood ratio, the conditional mean and variance must be estimated. In this
simple specification, the conditional mean is ŷR = 0 (since there are no parameters) and the conditional
variance is estimated using the MLE with the mean, σ̂2

R = y′y/n (the sum of squared regressands). The
mean under the alternative is ŷU = x′iβ̂ and the variance is estimated using σ̂2

U =(y−x′iβ̂ )′(y−x′iβ̂ )/n.
Once these quantities have been computed, the LR test statistic is calculated

LR = n ln
(

σ̂2
R

σ̂2
U

)
(3.60)
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LR Tests
Null Alternative LR M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 3558.8 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 956.5 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 10.1 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.08 2 0.126
β5 = 0 β5 6= 0 12.3 1 0.000

LM Tests
Null Alternative LM M p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 163.4 4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 184.3 3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 9.85 2 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2.07 2 0.127
β5 = 0 β5 6= 0 12.1 1 0.001

Table 3.6: The upper panel contains test statistics and p-values using LR tests for using a regression
of excess returns on the big-high portfolio on the four factors and a constant. In all cases the null was
tested against the alternative listed. The lower panel contains test statistics and p-values for LM tests
of same tests. Note that the LM test statistics are uniformly smaller than the LR test statistics which
reflects that the variance in a LM test is computed from the model estimated under the null, a value
that must be larger than the estimate of the variance under the alternative which is used in both the
Wald and LR tests. Both sets of tests were computed using the small-sample assumptions and may be
misleading since the residuals are non-normal and heteroskedastic.

where the identity σ̂
2
R

σ̂2
U
= SSER

SSEU
has been applied. Finally, LR is transformed by n−k

m

[
exp
(LR

n

)
−1
]

to
produce the test statistic, which is numerically identical to W . This can be seen by comparing the
values in table 3.6 to those in table 3.5.

3.8.6 Lagrange Multiplier Tests

Consider minimizing the sum of squared errors subject to a linear hypothesis.

min
β

(y−Xβ )′(y−Xβ ) subject to Rβ − r = 0.

This problem can be formulated in terms of a Lagrangian,

L(β ,λ ) = (y−Xβ )′(y−Xβ )+(Rβ − r)′λ

and the problem is

max
λ

{
min

β

L(β ,λ )
}
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The first-order conditions correspond to a saddle point,

∂L
∂β

=−2X′(y−Xβ )+R′λ = 0

∂L
∂λ

= Rβ − r = 0

pre-multiplying the top FOC by R(X′X)−1 (which does not change the value, since it is 0),

2R(X′X)−1(X′X)β −2R(X′X)−1X′y+R(X′X)−1R′λ = 0

⇒ 2Rβ −2Rβ̂ +R(X′X)−1R′λ = 0

where β̂ is the usual OLS estimator. Solving,

λ̃ = 2
[
R(X′X)−1R′

]−1
(Rβ̂ − r) (3.61)

β̃ = β̂ − (X′X)−1R′
[
R(X′X)−1R′

]−1
(Rβ̂ − r) (3.62)

These two solutions provide some insight into the statistical properties of the estimators. β̃ , the
constrained regression estimator, is a function of the OLS estimator, β̂ , and a step in the direction
of the constraint. The size of the change is influenced by the distance between the unconstrained
estimates and the constraint (Rβ̂ − r). If the unconstrained estimator happened to exactly satisfy the
constraint, there would be no step.11

The Lagrange multipliers, λ̃ , are weighted functions of the unconstrained estimates, β̂ , and will be
near zero if the constraint is nearly satisfied (Rβ̂ − r≈ 0). In microeconomics, Lagrange multipliers
are known as shadow prices since they measure the magnitude of the change in the objective function
would if the constraint was relaxed a small amount. Note that β̂ is the only source of randomness
in λ̃ (like β̃ ), and so λ̃ is a linear combination of normal random variables and will also follow a
normal distribution. These two properties combine to provide a mechanism for testing whether the
restrictions imposed by the null are consistent with the data. The distribution of λ̂ can be directly
computed and a test statistic can be formed.

There is another method to derive the LM test statistic that is motivated by the alternative name of
LM tests: Score tests. Returning to the first-order conditions and plugging in the parameters,

R′λ = 2X′(y−Xβ̃ )

R′λ = 2X′ε̃

where β̃ is the constrained estimate of β and ε̃ are the corresponding estimated errors (ε̃ = y−Xβ̃ ).
Thus R′λ has the same distribution as 2X′ε̃ . However, under the small-sample assumptions, ε̃ are
linear combinations of normal random variables and so are also normal,

2X′ε̃ ∼ N(0,4σ
2X′X)

11Even if the constraint is valid, the constraint will never be exactly satisfied.
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and

X′ε̃ ∼ N(0,σ2X′X). (3.63)

A test statistic that the scores are zero can be constructed in the same manner as a Wald test:

LMInfeasible =
ε̃
′X(X′X)−1X′ε̃

σ2 . (3.64)

However, like a Wald test this statistic is not feasible since σ2 is unknown. Using the same
substitution, the LM test statistic is given by

LM =
ε̃
′X(X′X)−1X′ε̃

s̃2 (3.65)

and has a Fm,n−k+m distribution where s̃2 is the estimated error variance from the constrained re-
gression. This is a different estimator than was used in constructing a Wald test statistic, where the
variance was computed from the unconstrained model. Both estimates are consistent under the null.
However, since SSER ≥ SSEU, s̃2 is likely to be larger than s2.12 LM tests are usually implemented
using a more convenient – but equivalent – form,

LM =
SSER−SSEU

m
SSER

n−k+m

. (3.66)

To use the Lagrange Multiplier principle to conduct a test:

Algorithm 3.3 (Small-Sample LM Test).

1. Estimate the unrestricted model Yi = xiβ + εi, and the restricted model, Ỹi = x̃iβ + εi.

2. Compute SSER =
∑n

i=1 ε̃2
i where ε̃i = ỹi− x̃iβ̃ are the residuals from the restricted regression,

and SSEU =
∑n

i=1 ε̂2
i where ε̂i = Yi−xiβ̂ are the residuals from the unrestricted regression.

3. Compute LM =
SSER−SSEU

m
SSER

n−k+m

.

4. Compare LM to the critical value, Cα , of the Fm,n−k+m distribution at size α . Reject the null
hypothesis if LM >Cα .

Alternatively, the scores can be directly tested.

Algorithm 3.4 (Alternative Small-Sample LM Test).

1. Estimate the restricted model, Ỹi = x̃iβ + εi.

2. Compute LM =
ε̃
′X(X′X)−1X′ ε̃

m
s2 where X is n by k the matrix of regressors from the unconstrained

model and s2 =
∑n

i=1 ε̃
2
i

n−k+m .

3. Compare LM to the critical value, Cα , of the Fm,n−k+m distribution at size α . Reject the null
hypothesis if LM >Cα .

12Note that since the degree-of-freedom adjustment in the two estimators is different, the magnitude estimated variance
is not directly proportional to SSER and SSEU.
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3.8.7 Example: LM Tests in Cross-Sectional Factor models

Table 3.6 also contains values from LM tests. LM tests have a slightly different distributions than
the Wald and LR and do not produce numerically identical results. While the Wald and LR tests
require estimation of the unrestricted model (estimation under the alternative), LM tests only require
estimation of the restricted model (estimation under the null). For example, in testing the null H0 :
β1 = β5 = 0 (that the MOM factor has no explanatory power and that the intercept is 0), the restricted
model is estimated from

BHe
i = γ1VWMe

i + γ2SMBi + γ3HMLi + εi.

The two conditions, that β1 = 0 and that β5 = 0 are imposed by excluding these regressors. Once the
restricted regression is fit, the residuals estimated under the null, ε̃i = Yi−xiβ̃ are computed and the
LM test is calculated from

LM =
ε̃
′X(X′X)−1X′ε̃

s2

where X is the set of explanatory variables from the unrestricted regression (in the case, xi = [1
VWMe

i SMBi HMLi MOMi]). Examining table 3.6, the LM test statistics are considerably smaller
than the Wald test statistics. This difference arises since the variance used in computing the LM
test statistic, σ̃2, is estimated under the null. For instance, in the most restricted case (H0 = β j = 0,
j = 1, . . . ,k), the variance is estimated by y′y/N (since k = 0 in this model) which is very different
from the variance estimated under the alternative (which is used by both the Wald and LR). Despite
the differences in the test statistics, the p-values in the table would result in the same inference. For
the one hypothesis that is not completely rejected, the p-value of the LM test is slightly larger than
that of the LR (or W). However, .130 and .129 should never make a qualitative difference (nor should
.101 and .099, even when using a 10% test). These results highlight a general feature of LM tests:
test statistics based on the LM-principle are smaller than Likelihood Ratios and Wald tests, and so
less likely to reject.

3.8.8 Comparing the Wald, LR, and LM Tests

With three tests available to test the same hypothesis, which is the correct one? In the small-sample
framework, the Wald is the obvious choice because W ≈ LR and W is larger than LM. However, the
LM has a slightly different distribution, so it is impossible to make an absolute statement. The choice
among these three tests reduces to user preference and ease of computation. Since computing SSEU

and SSER is simple, the Wald test is likely the simplest to implement.
These results are no longer true when nonlinear restrictions and/or nonlinear models are estimated.

Further discussion of the factors affecting the choice between the Wald, LR, and LM tests will be
reserved until then. Figure 3.4 contains a graphical representation of the three test statistics in the
context of a simple regression, Yi = βXi+εi.13 The Wald test measures the magnitude of the constraint
Rβ − r at the unconstrained estimator β̂ . The LR test measures how much of the sum of squared
errors has changed between β̂ and β̃ . Finally, the LM test measures the magnitude of the gradient,
X′(y−Xβ ) at the constrained estimator β̃ .

13Magnitudes of the lines is not to scale, so the magnitude of the test statistics cannot be determined from the picture.
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Location of the three test statistics

Wald

LR

LM

2X′ (y− Xβ )

SSE= (y− Xβ )′ (y− Xβ )

Rβ − r = 0

Figure 3.4: Graphical representation of the three major classes of tests. The Wald test measures
the magnitude of the constraint, Rβ − r, at the OLS parameter estimate, β̂ . The LM test measures
the magnitude of the score at the restricted estimator (β̃ ) while the LR test measures the difference
between the SSE at the restricted estimator and the SSET at the unrestricted estimator. Note: Only
the location of the test statistic, not their relative magnitudes, can be determined from this illustration.

3.9 Large-Sample Assumption

While the small-sample assumptions allow the exact distribution of the OLS estimator and test statis-
tics to be derived, these assumptions are not realistic in applications using financial data. Asset returns
are non-normal (both skewed and leptokurtic), heteroskedastic, and correlated. The large-sample
framework allows for inference on β without making strong assumptions about the distribution or
error covariance structure. However, the generality of the large-sample framework comes at the loss
of the ability to say anything exact about the estimates in finite samples.

Four new assumptions are needed to analyze the asymptotic behavior of the OLS estimators.

Assumption 3.7 (Stationary Ergodicity). {(xi,εi)} is a strictly stationary and ergodic sequence.

This is a technical assumption needed for consistency and asymptotic normality. It implies two
properties about the joint density of {(xi,εi)}: the joint distribution of {(xi,εi)} and {(xi+ j,εi+ j)}
depends on the time between observations ( j) and not the observation index (i) and that averages will
converge to their expected value (as long as they exist). There are a number of alternative assumptions
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that could be used in place of this assumption, although this assumption is broad enough to allow for
i.i.d. , i.d.n.d (independent not identically distributed, including heteroskedasticity), and some n.i.n.i.d.
data, although it does rule out some important cases. Specifically, the regressors cannot be trending
or otherwise depend on the observation index, an important property of some economic time series
such as the level of a market index or aggregate consumption. Stationarity will be considered more
carefully in the time-series chapters.

Assumption 3.8 (Rank). E[x′ixi] = ΣXX is nonsingular and finite.

This assumption, like assumption 3.3, is needed to ensure identification.

Assumption 3.9 (Martingale Difference). {x′iεi,Fi} is a martingale difference sequence,

E
[(

X j,iεi
)2
]
<∞, j = 1,2, . . . ,k, i = 1,2 . . .

and S = V[n−
1
2 X′ε] is finite and non singular.

A martingale difference sequence has the property that its mean is unpredictable using the information
contained in the information set (Fi ).

Definition 3.14 (Martingale Difference Sequence). Let {Zi} be a vector stochastic process and Fi be
the information set corresponding to observation i containing all information available when observa-
tion i was collected except Zi. {Zi,Fi} is a martingale difference sequence if

E[Zi|Fi] = 0

In the context of the linear regression model, it states that the current score is not predictable by
any of the previous scores, that the mean of the scores is zero (E[X′iεi] = 0), and there is no other
variable in Fi which can predict the scores. This assumption is sufficient to ensure that n−1/2X′ε will
follow a Central Limit Theorem, and it plays a role in consistency of the estimator. A m.d.s. is a fairly
general construct and does not exclude using time-series regressors as long as they are predetermined,
meaning that they do not depend on the process generating εi. For instance, in the CAPM, the return
on the market portfolio can be thought of as being determined independently of the idiosyncratic
shock affecting individual assets.

Assumption 3.10 (Moment Existence). E[X4
j,i]<∞, i = 1,2, . . ., j = 1,2, . . . ,k and E[ε2

i ] = σ2 <∞,
i = 1,2, . . ..

This final assumption requires that the fourth moment of any regressor exists and the variance
of the errors is finite. This assumption is needed to derive a consistent estimator of the parameter
covariance.

3.10 Large-Sample Properties

These assumptions lead to two theorems that describe the asymptotic behavior of β̂ : it is consistent
and asymptotically normally distributed. First, some new notation is needed. Let

β̂ n =

(
X′X

n

)−1(X′y
n

)
(3.67)

be the regression coefficient using n realizations from the stochastic process {xi,εi}.



3.10 Large-Sample Properties 165

Theorem 3.12 (Consistency of β̂ ). Under assumptions 3.1 and 3.7 - 3.9

β̂ n
p→ β

Consistency is a weak property of the OLS estimator, but it is important. This result relies crucially
on the implication of assumption 3.9 that n−1X′ε p→ 0, and under the same assumptions, the OLS
estimator is also asymptotically normally distributed.

Theorem 3.13 (Asymptotic Normality of β̂ ). Under assumptions 3.1 and 3.7 - 3.9

√
n(β̂ n−β )

d→ N(0,Σ−1
XX SΣ

−1
XX ) (3.68)

where ΣXX = E[x′ixi] and S = V[n−1/2X′ε]

Asymptotic normality provides the basis for hypothesis tests on β . However, using only theorem
3.13, tests are not feasible since ΣXX and S are unknown, and so must be estimated.

Theorem 3.14 (Consistency of OLS Parameter Covariance Estimator). Under assumptions 3.1 and
3.7 - 3.10,

Σ̂XX =n−1X′X p→ ΣXX

Ŝ =n−1
n∑

i=1

e2
i x′ixi

p→ S

=n−1 (X′ÊX
)

and
Σ̂
−1
XX ŜΣ̂

−1
XX

p→ Σ
−1
XX SΣ

−1
XX

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

Combining these theorems, the OLS estimator is consistent, asymptotically normal, and the asymp-
totic variance can be consistently estimated. These three properties provide the tools necessary to
conduct hypothesis tests in the asymptotic framework. The usual estimator of the residual variance is
also consistent for the variance of the innovations under the same conditions.

Theorem 3.15 (Consistency of OLS Variance Estimator). Under assumptions 3.1 and 3.7 - 3.10 ,

σ̂
2
n = n−1

ε̂
′
ε̂

p→ σ
2

Further, if homoskedasticity is assumed, then the parameter covariance estimator can be simpli-
fied.

Theorem 3.16 (Homoskedastic Errors). Under assumptions 3.1, 3.4, 3.5 and 3.7 - 3.10,

√
n(β̂ n−β )

d→ N(0,σ2
Σ
−1
XX )

Combining the result of this theorem with that of theorems 3.14 and 3.15, a consistent estimator
of σ2Σ

−1
XX is given by σ̂2

n Σ̂
−1
XX .
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3.11 Large-Sample Hypothesis Testing

All three test types, Wald, LR, and LM, have large-sample equivalents that exploit the estimated
parameters’ asymptotic normality. While these tests are only asymptotically exact, the use of the
asymptotic distribution is justified as an approximation to the finite-sample distribution, although the
quality of the CLT approximation depends on how well behaved the data are.

3.11.1 Wald Tests

Recall from Theorem 3.13,

√
n(β̂ n−β )

d→ N(0,Σ−1
XX SΣ

−1
XX ). (3.69)

Applying the properties of a normal random variable, if z∼ N(µ,Σ), c′z∼ N(c′µ,c′Σc) and that

if w∼ N(µ,σ2) then (w−µ)2

σ2 ∼ χ2
1 . Using these two properties, a test of the null

H0 : Rβ − r = 0

against the alternative

H1 : Rβ − r 6= 0

can be constructed.
Following from Theorem 3.13, if H0 : Rβ − r = 0 is true, then

√
n(Rβ̂ n− r) d→ N(0,RΣ

−1
XX SΣ

−1
XX R′) (3.70)

and

Γ
− 1

2
√

n(Rβ̂ n− r) d→ N(0,Ik) (3.71)

where Γ = RΣ
−1
XX SΣ

−1
XX R′. Under the null that H0 : Rβ − r = 0,

n(Rβ̂ n− r)′
[
RΣ
−1
XX SΣ

−1
XX R′

]−1
(Rβ̂ n− r) d→ χ

2
m (3.72)

where m is the rank(R). This estimator is not feasible since Γ is not known and must be estimated.
Fortunately, Γ can be consistently estimated by applying the results of Theorem 3.14

Σ̂XX = n−1X′X

Ŝ = n−1
n∑

i=1

e2
i x′ixi

and so

Γ̂ = Σ̂
−1
XX ŜΣ̂

−1
XX .

The feasible Wald statistic is defined
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W = n(Rβ̂ n− r)′
[
RΣ̂
−1
XX ŜΣ̂

−1
XX R′

]−1
(Rβ̂ n− r) d→ χ

2
m. (3.73)

Test statistic values can be compared to the critical value Cα from a χ2
m at the α-significance level

and the null is rejected if W is greater than Cα . The asymptotic t-test (which has a normal distribution)
is defined analogously,

t =
√

n
Rβ̂ n− r√

RΓ̂R′
d→ N(0,1), (3.74)

where R is a 1 by k vector. Typically R is a vector with 1 in its jth element, producing statistic

t =
√

n
β̂ jN√
[Γ̂] j j

d→ N(0,1)

where [Γ̂] j j is the jth diagonal element of Γ̂.
The n term in the Wald statistic (or

√
n in the t-test) may appear strange at first, although these

terms are also present in the classical tests. Recall that the t-stat (null H0 : β j = 0) from the classical
framework with homoskedastic data is given by

t1 =
β̂ j√

σ̂2[(X′X)−1] j j
.

The t-stat in the asymptotic framework is

t2 =
√

n
β̂ jN√

σ̂2[Σ̂
−1
XX ] j j

.

If t1 is multiplied and divided by
√

n, then

t1 =
√

n
β̂ j√

n
√

σ̂2[(X′X)−1] j j
=
√

n
β̂ j√

σ̂2[(X′X
n )−1] j j

=
√

n
β̂ j√

σ̂2[Σ̂
−1
XX ] j j

= t2,

and these two statistics have the same value since X′X differs from Σ̂XX by a factor of n.

Algorithm 3.5 (Large-Sample Wald Test).

1. Estimate the unrestricted model Yi = Xiβ + εi.

2. Estimate the parameter covariance using Σ̂
−1
XX ŜΣ̂

−1
XX where

Σ̂XX = n−1
n∑

i=1

x′ixi, Ŝ = n−1
n∑

i=1

ε̂
2
i x′ixi

3. Construct the restriction matrix, R, and the value of the restriction, r, from the null hypothesis.

4. Compute W = n(Rβ̂ n− r)′
[
RΣ̂
−1
XX ŜΣ̂

−1
XX R′

]−1
(Rβ̂ n− r).

5. Reject the null if W >Cα where Cα is the critical value from a χ2
m using a size of α .
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3.11.2 Lagrange Multiplier Tests

Recall that the first-order conditions of the constrained estimation problem require

R′λ̂ = 2X′ε̃

where ε̃ are the residuals estimated under the null H0 : Rβ − r = 0. The LM test examines whether
λ is close to zero. In the large-sample framework, λ̂ , like β̂ , is asymptotically normal and R′λ̂ will
only be close to 0 if λ̂ ≈ 0. The asymptotic version of the LM test can be compactly expressed if s̃ is
defined as the average score of the restricted estimator, s̃ = n−1X′ε̃ . In this notation,

LM = ns̃′S−1s̃ d→ χ
2
m. (3.75)

If the model is correctly specified, n−1X′ε̃ , which is a k by 1 vector with jth element n−1∑n
i=1 x j,iε̃i,

should be a mean-zero vector with asymptotic variance S by assumption 3.7. Thus,
√

n(n−1X′ε̃) d→
N(0,S) implies

√
nS−

1
2 s̃ d→ N

(
0,
[

Im 0
0 0

])
(3.76)

and so ns̃′S−1s̃ d→ χ2
m. This version is infeasible and the feasible version of the LM test must be used,

LM = ns̃′S̃−1s̃ d→ χ
2
m. (3.77)

where S̃ = n−1∑n
i=1 ε̃2

i x′ixi is the estimator of the asymptotic variance computed under the null. This
means that S̃ is computed using the residuals from the restricted regression, ε̃ , and that it will differ
from the usual estimator Ŝ which is computed using residuals from the unrestricted regression, ε̂ . Un-
der the null, both S̃ and Ŝ are consistent estimators for S and using one or the other has no asymptotic
effect.

If the residuals are homoskedastic, the LM test can also be expressed in terms of the R2 of the
unrestricted model when testing a null that the coefficients on all explanatory variables except the
intercept are zero. Suppose the regression fit was

Yi = β0 +β1X1,i +β2X2,i + . . .+βkXkn.

To test the H0 : β1 = β2 = . . .= βk = 0 (where the excluded β1 corresponds to a constant),

LM = nR2 d→ χ
2
k (3.78)

is equivalent to the test statistic in eq. (3.77). This expression is useful as a simple tool to test whether
the explanatory variables in a regression appear to explain any variation in the dependent variable. If
the residuals are heteroskedastic, the nR2 form of the LM test does not have standard distribution and
should not be used.

Algorithm 3.6 (Large-Sample LM Test).

1. Form the unrestricted model, Yi = Xiβ + εi.

2. Impose the null on the unrestricted model and estimate the restricted model, Ỹi = X̃iβ + εi.
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3. Compute the residuals from the restricted regression, ε̃i = Ỹi− x̃iβ̃ .

4. Construct the score using the residuals from the restricted regression from both models, s̃i = xiε̃i
where xi are the regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,

s̃ = n−1
n∑

i=1

s̃i, S̃ = n−1
n∑

i=1

s̃′is̃i (3.79)

6. Compute the LM test statistic as LM = ns̃S̃−1s̃′.

7. Reject the null if LM >Cα where Cα is the critical value from a χ2
m using a size of α .

3.11.3 Likelihood Ratio Tests

A critical distinction between small-sample and large-sample hypothesis testing is the omission of
assumption 3.6. Without this assumption, the distribution of the errors is left unspecified. Based on
the ease of implementing the Wald and LM tests their asymptotic framework, it may be tempting to
think the likelihood ratio is asymptotically valid. It is not. The technical details are complicated,
and the validity of the asymptotic distribution of the LR relies crucially on the Information Matrix
Equality holding. If the shocks are heteroskedastic, then the IME will generally not hold, and the
distribution of LR tests will be nonstandard.14

There is, however, a feasible likelihood-ratio like test available. The motivation for this test will
be clarified in the GMM chapter. For now, the functional form will be given with only minimal
explanation,

LR = ns̃′S−1s̃ d→ χ
2
m, (3.80)

where s̃ = n−1X′ε̃ is the average score vector when the estimator is computed under the null. This
statistic is similar to the LM test statistic, although there are two differences. First, one term has been
left out of this expression, and the formal definition of the asymptotic LR is

LR = ns̃′S−1s̃− ŝ′S−1ŝ d→ χ
2
m (3.81)

where ŝ = n−1X′ε̂ are the average scores from the unrestricted estimator. Recall from the first-order
conditions of OLS (eq. (3.7)) that ŝ = 0 and the second term in the general expression of the LR will
always be zero. The second difference between LR and LM exists only in the feasible versions. The
feasible version of the LR is given by

LR = ns̃′Ŝ−1s̃ d→ χ
2
m. (3.82)

where Ŝ is estimated using the scores of the unrestricted model (under the alternative),

Ŝ−1 =
1
n

n∑
i=1

ε̂
2
i x′ixi. (3.83)

14In this case, the LR will converge to a weighted mixture of m independent χ2
1 random variables where the weights

are not 1. The resulting distribution is not a χ2
m.
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The feasible LM, ns̃′S̃−1s̃, uses a covariance estimator (S̃)based on the scores from the restricted
model, s̃.

In models with heteroskedasticity, it is impossible to determine a priori whether the LM or the LR
test statistic will be larger, although folk wisdom states that LR test statistics are larger than LM test
statistics (and hence the LR will be more powerful). If the data are homoskedastic, and homoskedastic
estimators of Ŝ and S̃ are used (σ̂2(X′X/n)−1 and σ̃2(X′X/n)−1, respectively), then it must be the
case that LM < LR. This ordering of the two test statistic occurs since σ̂2 must be smaller than σ̃2

because OLS minimizes the squared residuals. The LR is guaranteed to have more power in this case.

Algorithm 3.7 (Large-Sample LR Test).

1. Estimate the unrestricted model Yi = Xiβ + εi.

2. Impose the null on the unrestricted model and estimate the restricted model, Ỹi = X̃iβ + εi.

3. Compute the residuals from the restricted regression, ε̃i = Ỹi− x̃iβ̃ , and from the unrestricted
regression, ε̂i = Yi−xiβ̂ .

4. Construct the score from both models, s̃i = xiε̃i and ŝi = xiε̂i, where in both cases xi are the
regressors from the unrestricted model.

5. Estimate the average score and the covariance of the score,

s̃ = n−1
n∑

i=1

s̃i, Ŝ = n−1
n∑

i=1

ŝ′iŝi (3.84)

6. Compute the LR test statistic as LR = ns̃Ŝ−1s̃′.

7. Reject the null if LR >Cα where Cα is the critical value from a χ2
m using a size of α .

3.11.4 Revisiting the Wald, LM, and LR tests

The previous tests can now be revisited while allowing for heteroskedasticity in the data. Tables
3.7 and 3.8 contain t-tests, Wald tests, LM tests, and LR tests that compare large-sample versions
of these test statistics to their small-sample framework equivalents. There is a clear direction in
the difference between the small-sample and large-sample test statistics: the large-sample statistics
are smaller than the small-sample statistics, often substantially. Examining table 3.7, 4 out of 5 of
the t-stats have decreased. Since the estimator of β̂ is the same in both the small-sample and the
large-sample frameworks, all of the difference is attributable to changes in the standard errors, which
typically increased by 50%. When t-stats differ dramatically under the two covariance estimators, the
likely cause is heteroskedasticity.

Table 3.8 shows that the Wald, LR, and LM test statistics also changed by large amounts.15 The
heteroskedasticity-robust Wald statistics decreased by up to a factor of 2, and the robust LM test
statistics decreased by up to 5 times. The LR test statistic values were generally larger than those

15The statistics based on the small-sample assumptions have fm,t−k or fm,t−k+m distributions while the statistics based
on the large-sample assumptions have χ2

m distributions, and so the values of the small-sample statistics must be multiplied
by m to be compared to the large-sample statistics.
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Homoskedasticity Heteroskedasticity
β̂ s.e.(β̂ ) t-stat p-value s.e.(β̂ ) t-stat p-value

Constant -0.086 0.042 -2.04 0.042 0.043 -1.991 0.046
VWMe 1.080 0.010 108.7 0.000 0.012 93.514 0.000
SMB 0.002 0.014 0.13 0.893 0.017 0.110 0.912
HML 0.764 0.015 50.8 0.000 0.021 36.380 0.000
MOM -0.035 0.010 -3.50 0.000 0.013 -2.631 0.009

Table 3.7: Comparing small and large-sample t-stats. The small-sample statistics in the left panel of
the table overstate the precision of the estimates. The heteroskedasticity robust standard errors are
larger for 4 out of 5 parameters, and one variable which was significant at the 15% level is insignifi-
cant.

of the corresponding Wald or LR test statistics. The relationship between the robust versions of the
Wald and LR statistics is not clear, and for models that are grossly misspecified, the Wald and LR
test statistics are substantially larger than their LM counterparts. However, when the value of the test
statistics is smaller, the three are virtually identical, and the decision taken using any of these three
tests is the same. All nulls except H0 : β1 = β3 = 0 are rejected using standard sizes (5-10%).

These changes should serve as a warning to conducting inference using covariance estimates based
on homoskedasticity. In most applications to financial time-series, heteroskedasticity robust covari-
ance estimators (and often HAC (Heteroskedasticity and Autocorrelation Consistent), which will be
defined in the time-series chapter) are automatically applied without testing for heteroskedasticity.

3.12 Violations of the Large-Sample Assumptions

The large-sample assumptions are just that: assumptions. While this set of assumptions is far more
general than the finite-sample setup, they may be violated in a number of ways. This section examines
the consequences of certain violations of the large-sample assumptions.

3.12.1 Omitted and Extraneous Variables

Suppose that the model is linear but misspecified, and a subset of the relevant regressors are excluded.
The model can be specified

Yi = β 1X1,i +β 2X2,i + εi (3.85)

where X1,i is 1 by k1 vector of included regressors and X2,i is a 1 by k2 vector of excluded but relevant
regressors. Omitting x2,i from the fit model, the least-squares estimator is

β̂ 1n =

(
X′1X1

n

)−1 X′1y
n

. (3.86)

This misspecified estimator is biased, and the bias depends on the magnitude of the coefficients on
the omitted variables and the correlation between the omitted and excluded regressors.
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Wald Tests
Small Sample Large Sample

Null Alternative M W p-value W p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 3558.8 0.000 2661.2 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 956.5 0.000 583.2 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 10.1 0.000 7.35 0.001
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.08 0.126 2.04 0.131
β5 = 0 β5 6= 0 1 12.3 0.000 6.92 0.009

LR Tests
Small Sample Large Sample

Null Alternative M LR p-value LR p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 3558.8 0.000 2696.4 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 956.5 0.000 589.3 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 10.1 0.000 8.11 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.08 0.126 2.13 0.119
β5 = 0 β5 6= 0 1 12.3 0.000 7.40 0.007

LM Tests
Small Sample Large Sample

Null Alternative M LM p-value LM p-value

β j = 0, j = 2, . . . ,5 β j 6= 0, j = 2, . . . ,5 4 163.4 0.000 34.8 0.000
β j = 0, j = 3,4,5 β j 6= 0, j = 3,4,5 3 184.3 0.000 31.9 0.000
β j = 0, j = 1,5 β j 6= 0, j = 1,5 2 9.85 0.000 7.82 0.000
β j = 0, j = 1,3 β j 6= 0, j = 1,3 2 2.07 0.127 2.11 0.121
β5 = 0 β5 6= 0 1 12.1 0.001 6.50 0.011

Table 3.8: Comparing large- and small-sample Wald, LM, and LR test statistics. The large-sample
test statistics are smaller than their small-sample counterparts due to the the heteroskedasticity present
in the data. While the decisions of these tests are unaffected by the choice of covariance estimator,
this will not always be the case.

Theorem 3.17 (Misspecified Regression). Under assumptions 3.1 and 3.7 - 3.9 through , if X can be
partitioned [X1 X2] where X1 correspond to included variables while X2 correspond to excluded
variables with non-zero coefficients, then

β̂ 1n
p→ β 1 +Σ

−1
X1X1

ΣX1X2β 2 (3.87)

β̂ 1
p→ β 1 +δβ 2

where

ΣXX =

[
ΣX1X1 ΣX1X2
Σ
′
X1X2

ΣX2X2

]
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The bias term, δβ 2 is composed of two elements. The first, δ , is a matrix of regression coefficients
where the jth column is the probability limit of the least-squares estimator in the regression

X2 j = X1δ j +ν ,

where X2 j is the jth column of X2. The second component of the bias term is the original regression
coefficients. As should be expected, larger coefficients on omitted variables lead to larger bias.

β̂ 1n
p→ β 1 under one of three conditions:

1. δ̂ n
p→ 0

2. β 2 = 0

3. The product δ̂ nβ 2
p→ 0.

β 2 has been assumed to be non-zero (if β 2 = 0 the model is correctly specified). δ n
p→ 0 only if the

regression coefficients of X2 on X1 are zero, which requires that the omitted and included regressors to
be uncorrelated (X2 lies in the null space of X1). This assumption should be considered implausible in
most applications and β̂ 1n is biased and inconsistent, in general. Note that certain classes of regressors
that are mutually orthogonal by design and can be safely omitted.16 Finally, if both δ and β 2 are non-
zero, the product could be zero, although, without a very peculiar specification and a careful selection
of regressors, this possibility should be considered unlikely.

Alternatively, consider the case where some irrelevant variables are included. The correct model
specification is

Yi = X1,iβ 1 + εi

and the model estimated is

Yi = X1,iβ 1 +X2,iβ 2 + εi

As long as the assumptions of the asymptotic framework are satisfied, the least-squares estimator is
consistent under theorem 3.12 and

β̂ n
p→
[

β 1
β 2

]
=

[
β 1
0

]
If the errors are homoskedastic, the variance of

√
n(β̂ n− β ) is σ2Σ

−1
XX where X = [X1 X2]. The

variance of β̂ 1n is the upper left k1 by k1 block of σ2Σ
−1
XX . Using the partitioned inverse,

Σ
−1
XX =

[
Σ
−1
X1X1

+Σ
−1
X1X1

ΣX1X2M1Σ
′
X1X2

Σ
−1
X1X1

−Σ
−1
X1X1

ΣX1X2M1

M1Σ
′
X1X2

Σ
−1
X1X1

Σ
−1
X2X2

+Σ
−1
X2X2

Σ
′
X1X2

M2ΣX1X2Σ
−1
X2X2

]
16Safely in terms of consistency of estimated parameters. Omitting variables will cause the estimated variance to be

inconsistent.
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where

M1 = lim
n→∞

X′2MX1X2

n

M2 = lim
n→∞

X′1MX2X1

n

and so the upper left block of the variance, Σ
−1
X1X1

+ Σ
−1
X1X1

ΣX1X2M1Σ
′
X1X2

Σ
−1
X1X1

, must be larger than
Σ
−1
X1X1

because the second term is a quadratic form and M1 is positive semi-definite.17 Noting that σ̂2

is consistent under both the correct specification and the expanded specification, the cost of including
extraneous regressors is an increase in the asymptotic variance.

In finite samples, there is a bias-variance trade-off. Fewer regressors included in a model leads
to more precise estimates. Models containing more variables tend to produce coefficient estimated
with less bias. Additionally, if relevant variables are omitted then σ̂2 is larger than it would be if all
relevant variables are included, and so the estimated parameter variance, σ̂2(X′X)−1 is also larger.
Asymptotically, only the bias remains as it is of a higher order than variance (scaling β̂ n−β by

√
n,

the bias is exploding while the variance is constant), and so when the sample size is large and estimates
are precise, a larger model should be preferred to a smaller model. In cases where the sample size
is small, there is a justification for omitting a variable to enhance the precision of those remaining,
particularly when the effect of the omitted variable is not of interest or when the excluded variable is
highly correlated with one or more included variables.

3.12.2 Errors Correlated with Regressors

Bias can arise from sources other than omitted variables. Consider the case where X is measured with
noise and define X̃i = Xi+η i where X̃i is a noisy proxy for Xi, the “true” (unobserved) regressor, and
η i is an i.i.d.mean 0 noise process which is independent of X and ε with finite second moments Σηη .
The OLS estimator,

β̂ n =

(
X̃′X̃

n

)−1 X̃′y
n

(3.88)

=

(
(X+η)′ (X+η)

n

)−1
(X+η)′ y

n
(3.89)

=

(
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1
(X+η)′ y

n
(3.90)

=

(
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1(X′y
n

+
η ′y
n

)
(3.91)

will be biased downward. To understand the source of the bias, consider the behavior, under the
asymptotic assumptions, of

17Both M1 and M2 are covariance matrices of the residuals of regressions of x2 on x1 and x1 on x2 respectively.
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X′X
n

p→ ΣXX

X′η
n

p→ 0

η ′η

n
p→ Σηη

X′y
n

p→ ΣXXβ

η ′y
n

p→ 0

so (
X′X

n
+

X′η
n

+
η ′X

n
+

η ′η

n

)−1
p→ (ΣXX +Σηη)

−1

and

β̂ n
p→ (ΣXX +Σηη)

−1
ΣXXβ .

If Σηη 6= 0, then β̂ n
p9 β and the estimator is inconsistent.

The OLS estimator is also biased in the case where n−1X′ε p9 0k, which arises in situations with
endogeneity. In these cases, xi and εi are simultaneously determined and correlated. This correlation
results in a biased estimator since β̂ n

p→ β +Σ
−1
XXΣXε where ΣXε is the limit of n−1X′ε . The classic

example of endogeneity is simultaneous equation models although many situations exist where the
innovation may be correlated with one or more regressors; omitted variables can be considered a
special case of endogeneity by reformulating the model.

The solution to this problem is to find an instrument, zi, which is correlated with the endogenous
variable, xi, but uncorrelated with εi. Intuitively, the endogenous portions of xi can be annihilated by
regressing xi on zi and using the fit values. This procedure is known as instrumental variable (IV)
regression in the case where the number of zi variables is the same as the number of xi variables and
two-stage least squares (2SLS) when the size of zi is larger than k.

Define zi as a vector of exogenous variables where zi may contain any of the variables in xi
which are exogenous. However, all endogenous variables – those correlated with the error – must be
excluded.

First, a few assumptions must be reformulated.

Assumption 3.11 (IV Stationary Ergodicity). {(Zi,Xi,εi)} is a strictly stationary and ergodic se-
quence.

Assumption 3.12 (IV Rank). E[Z′iXi] = ΣZX is nonsingular and finite.

Assumption 3.13 (IV Martingale Difference). {Z′iεi,Fi} is a martingale difference sequence,

E
[(

Z j,iεi
)2
]
<∞, j = 1,2, . . . ,k , i = 1,2 . . .

and S = V[n−
1
2 Z′ε] is finite and non singular.
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Assumption 3.14 (IV Moment Existence). E[X4
ji] <∞ and E[Z4

ji] <∞, j = 1,2, . . . ,k, i = 1,2, . . .
and E[ε2

i ] = σ2 <∞, i = 1,2, . . ..

These four assumptions are nearly identical to the four used to establish the asymptotic normality
of the OLS estimator. The IV estimator is defined

β̂
IV

n =

(
Z′X

n

)−1 Z′y
n

(3.92)

where the n term is present to describe the number of observations used in the IV estimator. The
asymptotic properties are easy to establish and are virtually identical to those of the OLS estimator.

Theorem 3.18 (Consistency of the IV Estimator). Under assumptions 3.1 and 3.11-3.13, the IV esti-
mator is consistent,

β̂
IV

n
p→ β

and asymptotically normal √
n(β̂

IV

n −β )
d→ N(0,Σ−1

ZX S̈Σ
−1
ZX ) (3.93)

where ΣZX = E[x′izi] and S̈ = V[n−1/2Z′ε].

Additionally, consistent estimators are available for the components of the asymptotic variance.

Theorem 3.19 (Asymptotic Normality of the IV Estimator). Under assumptions 3.1 and 3.11 - 3.14,

Σ̂ZX = n−1Z′X p→ ΣZX (3.94)

ˆ̈S = n−1
n∑

i=1

ε
2
i z′izi

p→ S̈ (3.95)

and
Σ̂
−1
ZX

ˆ̈SΣ̂
′−1
ZX

p→ Σ
−1
ZX S̈Σ

′−1
ZX (3.96)

The asymptotic variance can be easily computed from

Σ̂
−1
ZX

ˆ̈SΣ̂
−1
ZX =N

(
Z′X

)−1
(

n∑
i=1

ε̂
2
i z′izi

)(
X′Z

)−1 (3.97)

=N
(
Z′X

)−1 (Z′ÊZ
)(

X′Z
)−1

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

IV estimators have one further complication beyond those of OLS. Assumption 3.8 requires the
rank of Z′X to be full (k), and so zi must be correlated with xi. Moreover, since the asymptotic
variance depends on Σ

−1
ZX , even variables with non-zero correlation may produce imprecise estimates,

especially if the correlation is low. Instruments must be carefully chosen, although substantially
deeper treatment is beyond the scope of this course. Fortunately, IV estimators are infrequently
needed in financial econometrics.
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3.12.3 Monte Carlo: The effect of instrument correlation

While IV estimators are not often needed with financial data18, the problem of endogeneity is severe
and it is important to be aware of the consequences and pitfalls of using IV estimators.19 To under-
stand this problem, consider a simple Monte Carlo. The regressor (Xi), the instrument (Zi) and the
error are all drawn from a multivariate normal with the covariance matrix, Xi

Zi
εi

∼ N

0,

 1 ρxz ρxε

ρxz 1 0
ρxε 0 1

 .

Throughout the experiment, ρxε = 0.4 and ρxz is varied from 0 to .9. 200 data points were generated
from

Yi = β1Xi + εi

where β1 = 1. It is straightforward to show that E[β̂ ] = 1+ρxε and that β̂ IV
n

p→ 1 as long as ρxz 6= 0.
10,000 replications were generated and the IV estimators were computed

β̂
IV
n = (Z′X)−1(Z′y).

Figure 3.5 contains kernel density plots of the instrumental variable estimator for ρxz of .2, .4,
.6 and .8. When the correlation between the instrument and X is low, the distribution is dispersed
(exhibiting a large variance). As the correlation increases, the variance decreases and the distribution
become increasingly normal. This experiment highlights two fundamental problems with IV estima-
tors: they have large variance when no “good instruments” – highly correlated with xi by uncorrelated
with εi – are available and the finite-sample distribution of IV estimators may be poorly approximated
a normal.

3.12.4 Heteroskedasticity

Assumption 3.7 does not require data to be homoskedastic, which is useful since heteroskedasticity
is the rule rather than the exception in financial data. If the data are homoskedastic, the asymptotic
covariance of β̂ can be consistently estimated by

Ŝ = σ̂
2
(

X′X
n

)−1

Heteroskedastic errors require the use of a more complicated covariance estimator, and the asymptotic
variance can be consistently estimated using

18IV estimators are most common in corporate finance when examining executive compensation and company perfor-
mance.

19The intuition behind IV estimators is generally applicable to 2SLS.
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Effect of correlation on the variance of β̂
IV

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

ρ = 0.8

ρ = 0.8

ρ = 0.8

ρ = 0.8

Figure 3.5: Kernel density of the instrumental variable estimator β̂ IV
n with varying degrees of corre-

lation between the endogenous variable and the instrument. Increasing the correlation between the
instrument and the endogenous variable leads to a large decrease in the variance of the estimated
parameter (β = 1). When the correlation is small (.2), the distribution has a large variance and is not
well approximated by a normal random variable.

Σ̂
−1
XX ŜΣ̂

−1
XX =

(
X′X

n

)−1(∑n
i=1 ε̂2

i x′ixi

n

)(
X′X

n

)−1

(3.98)

= n
(
X′X

)−1
(

n∑
i=1

ε̂
2
i x′ixi

)(
X′X

)−1

= n
(
X′X

)−1 (X′ÊX
)(

X′X
)−1

where Ê = diag(ε̂2
1 , . . . , ε̂

2
n ) is a matrix with the estimated residuals squared along its diagonal.

Faced with two covariance estimators, one which is consistent under minimal assumptions and one
which requires an additional, often implausible assumption, it may be tempting use rely exclusively on
the robust estimator. This covariance estimator is known as the White heteroskedasticity consistent
covariance estimator and standard errors computed using eq. (3.98) are called heteroskedasticity
robust standard errors or White standard errors (White, 1980). Using a heteroskedasticity-consistent
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estimator when not needed (homoskedastic data) results in test statistics that have worse small-sample
properties. In small samples, hypothesis tests are more likely to have size distortions and so using 5%
critical values may lead to rejection of the null 10% or more of the time when the null is true. On the
other hand, using an inconsistent estimator of the parameter covariance – assuming homoskedasticity
when the data are not – produces tests with size distortions, even asymptotically.

White (1980)also provides a test to determine if a heteroskedasticity robust covariance estimator
is required. Each term in the heteroskedasticity-consistent estimator takes the form

ε
2
i x′ixi =


ε2

i x2
1,i ε2

i x1,ix2,i . . . ε2
i x1,ixkn

ε2
i x1,ix2,i ε2

i x2
2,i . . . ε2

i x2,ixkn
...

... . . .
...

ε2
i x1,ixkn ε2

i x2,ixkn . . . ε2
i x2

kn

 ,
and so, if E[ε2

i x jnxln] = E[ε2
i ]E[x jnxln], for all j and l, then the heteroskedasticity robust and the stan-

dard estimator will both consistently estimate the asymptotic variance of β̂ . White’s test is formulated
as a regression of squared estimated residuals on all unique squares and cross products of xi. Suppose
the original regression specification is

Yi = β1 +β2X1,i +β3X2,i + εi.

White’s test uses an auxiliary regression of ε̂2
i on the squares and cross-produces of all regressors,

{1, X1,i, X2,i, X2
1,i, X2

2,i, X1,iX2,i}:

ε̂
2
i = δ1 +δ2X1,i +δ3X2,i +δ4X2

1,i +δ5X2
2,i +δ6X1,iX2,i +ηi. (3.99)

The null hypothesis tested is H0 : δ j = 0, j > 1, and the test statistic can be computed using nR2

where the centered R2 is from the model in eq. (3.99). Recall that nR2 is an LM test of the null
that all coefficients except the intercept are zero and has an asymptotic χ2

ν where ν is the number of
restrictions – the same as the number of regressors excluding the constant. If the null is rejected, a
heteroskedasticity robust covariance estimator is required.

Algorithm 3.8 (White’s Test).

1. Fit the model Yi = Xiβ + εi

2. Construct the fit residuals ε̂i = Yi−Xiβ̂

3. Construct the auxiliary regressors Zi where the k(k+ 1)/2 elements of zi are computed from
Xi,oXi,p for o = 1,2, . . . ,k, p = o,o+1, . . . ,k.

4. Estimate the auxiliary regression ε̂2
i = Ziγ +ηi

5. Compute White’s Test statistic as nR2 where the R2 is from the auxiliary regression and compare
to the critical value at size α from a χ2

k(k+1)/2−1.
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3.12.5 Example: White’s test on the FF data

White’s heteroskedasticity test is implemented using the estimated residuals, ε̂i =Yi−x′iβ̂ , by regress-
ing the estimated residuals squared on all unique cross products of the regressors. The primary model
fit is

BHe
i = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi.

and the auxiliary model is specified

ε̂
2
i = δ1 +δ2VWMe

i +δ3SMBi +δ4HMLi +δ5MOMi +δ6 (VWMe
i )

2 +δ7VWMe
i SMBi

+δ8VWMe
i HMLi +δ9VWMe

i MOMi +δ10SMB2
i +δ11SMBiHMLi

+δ12SMBiMOMi +δ13HML2
i +δ14HMLiMOMi +δ15MOM2

i +ηi

Estimating this regression produces an R2 of 10.9% and nR2 = 74.8, which has an asymptotic χ2
14

distribution (14 regressors, excluding the constant). The p-value of this test statistic is 0.000, and the
null of homoskedasticity is strongly rejected.

3.12.6 Generalized Least Squares

An alternative to modeling heteroskedastic data is to transform the data so that it is homoskedastic
using generalized least squares (GLS). GLS extends OLS to allow for arbitrary weighting matrices.
The GLS estimator of β is defined

β̂
GLS

= (X′W−1X)−1X′W−1y, (3.100)

for some positive definite matrix W. Without any further assumptions or restrictions on W, β̂
GLS

is
unbiased under the same conditions as β̂ , and the variance of β̂ can be easily shown to be

(X′W−1X)−1(X′W−1VW−1X)(X′W−1X)−1

where V is the n by n covariance matrix of ε .
The full value of GLS is only realized when W is wisely chosen. Suppose that the data are

heteroskedastic but not serial correlated,20 and so

y = Xβ + ε (3.101)

where V[εi|X] = σ2
i and therefore heteroskedastic. Further, assume σ2

i is known. Returning to the
small-sample assumptions, choosing W∝ V(ε|X)21, the GLS estimator will be efficient.

Assumption 3.15 (Error Covariance). V = V[ε|X]

Setting W = V, the GLS estimator is BLUE.

20Serial correlation is ruled out by assumption 3.9.
21∝ is the mathematical symbol for “proportional to”.
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Theorem 3.20 (Variance of β̂
GLS

). Under assumptions 3.1 - 3.3 and 3.15,

V[β̂
GLS|X] = (X′V−1X)−1

and V[β̂
GLS|X]≤ V[β̃ |X] where β̃ = Cy is any other linear unbiased estimator with E[β̃ ] = β

To understand the intuition behind this result, note that the GLS estimator can be expressed as an
OLS estimator using transformed data. Returning to the model in eq. (3.101), and pre-multiplying by
W−

1
2 ,

W−
1
2 y = W−

1
2 Xβ +W−

1
2 ε

ỹ = X̃β + ε̃

and so

β̂ =
(
X̃′X̃

)
X̃′ỹ

=
(

X′W−
1
2 W−

1
2 X
)

X′W−
1
2 W−

1
2 y

=
(
X′W−1X

)
X′W−1y

= β̂
GLS

.

In the original model, W = V[ε|X], and so V[W−
1
2 ε|X] = W−

1
2 WW−

1
2 = In. ε̃ is homoskedastic

and uncorrelated and the transformed model satisfies the assumption of the Gauss-Markov theorem
(theorem 3.3).

This result is only directly applicable under the small-sample assumptions and then only if V[ε|X]
is known a priori. In practice, neither is true: data are not congruent with the small-sample as-
sumptions and V[ε|X] is never known. The feasible GLS (FGLS) estimator solves these two issues,
although the efficiency gains of FGLS have only asymptotic justification. Suppose that V[ε|X] =
ω1 +ω2x1,i + . . .+ωk+1xkn where ω j are unknown. The FGLS procedure provides a method to esti-
mate these parameters and implement a feasible GLS estimator.

The FGLS procedure is described in the following algorithm.

Algorithm 3.9 (Feasible GLS Estimation).

1. Estimate β̂ using OLS.

2. Using the estimated residuals, ε̂ = y−Xβ̂ , estimate an auxiliary model by regressing the
squared residual on the variables of the variance model.

3. Using the estimated variance model parameters ω̂ , produce a fit variance matrix, V̂.

4. Compute ỹ = V̂−
1
2 y and X̃ = V̂−

1
2 X compute β̂

FGLS
using the OLS estimator on the transformed

regressors and regressand.
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Hypothesis testing can be performed on β̂
FGLS

using the standard test statistics with the FGLS
variance estimator,

σ̃
2(X′V̂−1X)−1 = σ̃

2 (X̃′X̃)−1

where σ̃2 is the sample variance of the FGLS regression errors (ε̃ = ỹ− X̃β̂
FGLS

).
While FGLS is only formally asymptotically justified, FGLS estimates are often much more pre-

cise in finite samples, especially if the data is very heteroskedastic. Estimator accuracy improves the
most when some observations have a vastly larger variance than others. The OLS estimator gives these
observations too much weight, inefficiently exploiting the information in the remaining observations.
FGLS, even when estimated with a diagonal weighting matrix that may be slightly misspecified, can
produce substantially more precise estimates.22

3.12.6.1 Monte Carlo: A simple GLS

A simple Monte Carlo was designed to demonstrate the gains of GLS. The observed data are generated
according to

Yi = Xi +Xα
i εi

where Xi is i.i.d.U(0,1) and εi is standard normal. α takes the values of 0.8, 1.6, 2.8 and 4. When
α is low the data are approximately homoskedastic. As α increases the data are increasingly het-
eroskedastic and the probability of producing a few residuals with small variances increases. The
OLS and (infeasible) GLS estimators were fit to the data and figure 3.6 contains kernel density plots
of β̂ and β̂ GLS.

When α is small, the OLS and GLS parameter estimates have similar variances, indicated by the
similarity in distribution. As α increases, the GLS estimator becomes very precise which is due to
GLS’s reweighing of the data by the inverse of its variance. In effect, observations with the smallest
errors become very influential in determining β̂ . This is the general principle behind GLS: let the data
points which are most precise about the unknown parameters have the most influence.

3.12.7 Example: GLS in the Factor model

Even if it is unreasonable to assume that the entire covariance structure of the residuals can be cor-
rectly specified in the auxiliary regression, GLS estimates are often much more precise than OLS
estimates. Consider the regression of BHe on the four factors and a constant. The OLS estimates are
identical to those previously presented and the GLS estimates will be computed using the estimated
variances from White’s test. Define

V̂ = diag
(
σ̂

2
1 , σ̂

2
2 , . . . , σ̂

2
n
)

where σ̂2
i is the fit value from the auxiliary regression in White’s test that included only the squares

of the explanatory variables. Coefficients were estimated by regressing ỹ on X̃ where

ỹ = V̂−
1
2 y

22If the model for the conditional variance of εi is misspecified in an application of FGLS, the resulting estimator is not
asymptotically efficient and a heteroskedasticity robust covariance estimator is required.
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Gains of using GLS
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Figure 3.6: The four plots show the gains to using the GLS estimator on heteroskedastic data. The
data were generated according to Yi = Xi +Xα

i εi where Xi is i.i.d.uniform and εi is standard normal.
For large α , the GLS estimator is substantially more efficient than the OLS estimator. However, the
intuition behind the result is not that high variance residuals have been down-weighted, but that low
variance residuals, some with very low variances, have been up-weighted to produce an accurate fit.

X̃ = V̂−
1
2 X

and β̂
GLS

= (X̃′X̃)−1X̃′ỹ. ε̂
GLS = y−Xβ̂

GLS
are computed from the original data using the GLS

estimate of β , and the variance of the GLS estimator can be computed using

(X̃′X̃)−1(X̃′ ̂̃EX̃)−1(X̃′X̃)−1.

where ̂̃E is a diagonal matrix with the estimated residuals squared,
(
ε̂GLS

i
)2

, from the GLS procedure
along its diagonal. Table 3.9 contains the estimated parameters, t-stats and p-values using both the
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OLS GLS
β̂ s.e.(β̂ ) t-stat p-values β̂ GLS s.e.(β̂ GLS) t-stats p-values

Constant -0.09 0.04 -1.99 0.05 -0.09 0.04 -2.26 0.02
VWMe 1.08 0.01 93.5 0.00 1.08 0.01 101.6 0.00
SMB 0.00 0.02 0.11 0.91 -0.00 0.02 -0.19 0.85
HML 0.76 0.02 36.4 0.00 0.73 0.02 39.3 0.00
MOM -0.04 0.01 -2.63 0.01 -0.04 0.01 -3.06 0.00

Table 3.9: OLS and GLS parameter estimates and t-stats. t-stats indicate that the GLS parameter
estimates are more precise.

OLS and the GLS estimates. The GLS estimation procedure appears to provide more precise estimates
and inference. The difference in precision is particularly large for SMB.

3.13 Model Selection and Specification Checking

Econometric problems often begin with a variable whose dynamics are of interest and a relatively
large set of candidate explanatory variables. The process by which the set of regressors is reduced is
known as model selection or building.

Model building inevitably reduces to balancing two competing considerations: congruence and
parsimony. A congruent model is one that captures all of the variation in the data explained by
the regressors. Obviously, including all of the regressors and all functions of the regressors should
produce a congruent model. However, this is also an infeasible procedure since there are infinitely
many functions of even a single regressor. Parsimony dictates that the model should be as simple
as possible and so models with fewer regressors are favored. The ideal model is the parsimonious
congruent model that contains all variables necessary to explain the variation in the regressand and
nothing else.

Model selection is as much a black art as science and some lessons can only be taught through
experience. One principle that should be universally applied when selecting a model is to rely on
economic theory and, failing that, common sense. The simplest method to select a poorly performing
model is to try any and all variables, a process known as data snooping that is capable of producing
a model with an arbitrarily high R2 even if there is no relationship between the regressand and the
regressors.

There are a few variable selection methods which can be examined for their properties. These
include:

• General to Specific modeling (GtS)

• Specific to General modeling (StG)

• Information criteria (IC)

• Cross-validation
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3.13.1 Model Building

3.13.1.1 General to Specific

General to specific (GtS) model building begins by estimating the largest model that can be justified
by economic theory (and common sense). This model is then pared down to produce the smallest
model that remains congruent with the data. The simplest version of GtS begins with the complete
model. If any coefficients have individual p-values less than some significance level α (usually 5 or
10%), the least significant regressor is dropped from the regression. The procedure is repeated using
the remaining included regressors until all coefficients are statistically significant. In each step, the
least significant regressor is removed from the model.

One drawback to this simple procedure is that variables that are correlated but relevant are often
dropped. This is due to a problem known as multicollinearity and individual t-stats will be small but
joint significance tests that all coefficients are simultaneously zero will strongly reject. This suggests
using joint hypothesis tests to pare the general model down to the specific one. While theoretically
attractive, the scope the of possible joint hypothesis tests is vast even in a small model, and so using
joint test is impractical.

GtS suffers from two additional issues. First, it will include an irrelevant variable with positive
probability (asymptotically) but will never exclude a relevant variable. Second, test statistics do not
have standard distributions when they are used sequentially (as is the case with any sequential model
building procedure). The only viable solution to the second problem is to fit a single model, make
variable inclusions and exclusion choices, and live with the result. This practice is not typically
followed and most econometricians use an iterative procedure despite the problems of sequential
testing.

3.13.1.2 Specific to General

Specific to General (StG) model building begins by estimating the smallest model, usually including
only a constant. Variables are then added sequentially based on maximum t-stat until there is no
excluded variable with a significant t-stat at some predetermined α (again, usually 5 or 10%). StG
suffers from the same issues as GtS. First it will asymptotically include all relevant variables and
some irrelevant ones and second, tests implemented sequentially do not have correct size. Choosing
between StG and GtS is mainly user preference, although they rarely select the same model. One
argument in favor of using a GtS approach is that the variance is consistently estimated in the first
step of the general specification while the variance estimated in the first step of the an StG selection
is too large. The leads StG processes to have t-stats that are smaller than GtS t-stats and so StG
generally selects a smaller model than GtS.

3.13.1.3 Information Criteria

The third method of model selection uses Information Criteria (IC). Information Criteria reward the
model for producing smaller SSE while punishing it for the inclusion of additional regressors. The two
most frequently used are the Akaike Information Criterion (AIC) and Schwarz Information Criterion
(SIC) or Bayesian Information Criterion (BIC).23 Most Information Criteria are of the form

23The BIC and SIC are the same. BIC is probably the most common name but SIC or S/BIC are also frequently
encountered.
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−2l +P

where l is the log-likelihood value at the parameter estimates and P is a penalty term. In the case of
least squares, where the log-likelihood is not known (or needed), IC’s take the form

ln σ̂
2 +P

where the penalty term is divided by n.

Definition 3.15 (Akaike Information Criterion (AIC)). For likelihood-based models the AIC is de-
fined

AIC =−2l +2k (3.102)

and in its least squares application,

AIC = ln σ̂
2 +

2k
n

(3.103)

Definition 3.16 (Schwarz/Bayesian Information Criterion (S/BIC)). For likelihood-based models the
BIC (SIC) is defined

BIC =−2l + k lnn (3.104)

and in its least squares applications

BIC = ln σ̂
2 + k

lnn
n

(3.105)

The obvious difference between these two IC is that the AIC has a constant penalty term while
the BIC has a penalty term that increases with the number of observations. The effect of the sharper
penalty in the S/BIC is that for larger data sizes, the marginal increase in the likelihood (or decrease
in the variance) must be greater. This distinction is subtle but important: using the BIC to select from
a finite set of regressors leads to the correct model being chosen while the AIC asymptotically selects
a model that includes irrelevant regressors.

Using an IC to select a model is similar to either a GtS or StG search. For example, to use
an StG selection method, begin with the smallest model (usually a constant) and compute the IC
for this model. Next, consider all possible univariate regressions. If any reduce the IC, extend the
specification to include the variable that produced the smallest IC. Now, beginning from the selected
univariate regression, estimate all bivariate regressions. Again, if any decrease the IC, choose the one
which produces the smallest value. Repeat this procedure until the marginal contribution to the IC of
adding any additional variable is positive (i.e., when comparing an L and L+ 1 variable regression,
including and additional variables increase the IC).

As an alternative, if the number of regressors is sufficiently small (less than 20) it is possible to
try every possible combination and choose the smallest IC. This requires 2L regressions where L is
the number of available regressors (220 is about 1,000,000).

3.13.1.4 Cross-validation

Cross-validation uses pseudo-out-of-sample prediction performance to assess model specification. It
is most commonly used to select a preferred model from a set of candidate models, for example, the
collection of models visited as part of a GtS or StG model selection process. Variables with robust
predictive power should be useful both in- and out-of-sample. Cross-validation estimates parameters
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using a random subset of the data and then computes the pseudo-out-of-sample SSE on the obser-
vations that were not used in estimation. This criterion rewards models include variables with good
predictive power and exclude models that incorporate variables with small coefficients that do not
improve out-of-sample prediction.

The mutually exclusive and exhaustive subsets used for estimation and evaluation are randomly
chosen. This randomization selection is then repeatedly applied to assess the out-of-sample fit of all
data points. The most common form of cross-validation used in cross-sectional analysis is as k-fold
cross-validation. This method splits the data into k-equal-sized blocks where block assignment is
random. Model parameters are then estimated using the data in k−1 blocks, and the predictive power
is evaluated on the excluded block. This leave-one-block-out strategy is then repeated for each of the
remaining k−1 blocks. The overall cross-validated SSE is computed from the SSE values calculated
on each block held out of the estimation.

Algorithm 3.10 (k-fold Cross-validation).

1. Split the data randomly into k-equal-sized bins

2. For each model m = 1, . . . ,M under consideration

(a) For i = 1, . . . ,k

i. Estimate model parameters excluding the the observations in block i,

β̂ m,i = argminβ m,i

n∑
j=1, j/∈Bi

(
Yj−xm, jβ m,i

)2

where xm,· are the regressors included in model m and Bi is the set of observation
indices in block i.

ii. Compute the block i SSE as SSEm,i =
∑

j∈Bi

(
Yj−xm, jβ̂ m,i

)2
.

(b) Compute the overall cross-validated SSE as SSEm,CV =
∑k

i=1 SSEm,i.

3. Select the model that produces the smallest cross-validates SSE.

3.13.2 Specification Checking

Once a model has been selected, the final step is to examine the specification, where a number of
issues may arise. For example, a model may have neglected some nonlinear features in the data, a few
outliers may be determining the parameter estimates, or the data may be heteroskedastic. Residuals
for the basis of most specification checks, although the first step in assessing model fit is always to
plot the residuals. A simple residual plot often reveals problems with a model, such as large (and
generally influential) residuals or correlation among the residuals in time-series applications.

Residual Plots and Nonlinearity Plot, plot, plot. Plots of both data and residuals, while not
perfect, are effective methods to detect specification problems. Most data analysis should include a
plot of the initial unfiltered data where large observation or missing data are easily detected. Once
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Neglected Nonlinearity and Residual Plots
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Figure 3.7: The top panel contains data generated according to Yi = Xi +X2
i + εi and a fit from a

model Yi = β1 +β2Xi + εi. The nonlinearity should be obvious, but is even clearer in the ordered (by
Xi) residual plot where a distinct “U” shape can be seen (bottom panel).

a model has been estimated the residuals should be plotted, usually by sorting them against the or-
dered regressors when using cross-sectional data or against time (the observation index) in time-series
applications.

To see the benefits of plotting residuals, suppose the data were generated by Yi =Xi+X2
i +εi where

Xi and εi are i.i.d. standard normal, but an affine specification, Yi = β1 +β2Xi + εi was fit. Figure 3.7
contains plots of the data and fit lines (top panel) and errors (bottom panel). It is obvious from the
data and fit line that the model is misspecified and the residual plot makes this clear. Residuals should
have no discernible pattern in their mean when plotted against any variable (or function of variables)
in the data set.

One statistical test for detecting neglected nonlinearity is Ramsey’s RESET test. Suppose the
model

Yi = Xiβ + εi

is fit and one desires to test whether there is a neglected nonlinearity present. The RESET test uses
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powers of the fit data, Ŷi as additional regressors to test whether there is evidence of nonlinearity in
the data.

Definition 3.17 (Ramsey’s RESET Test). The RESET test is a test of the null the null H0 : γ1 = . . .=
γR = 0 in an auxiliary regression,

Yi = Xiβ + γ1Ŷ 2
i + γ2Ŷ 3

i + . . .+ γRŶ R−1
i εi

where Ŷi are the fit values of Yi generated in the initial regression. The test statistic has an asymptotic
χ2

R distribution.

R is typically 1 or 2 since higher powers may produce numerical problems, imprecise estimates,
and size distortions. The biggest difficulty of using a RESET test is that rejection of the null is not
informative about the changes needed to the original specification.

3.13.2.1 Parameter Stability

Parameter instability is a common problem in actual data. For example, recent evidence suggests that
the market β in a CAPM may be differ across up and down markets Ang, Chen, and Xing (2006). A
model fit assuming the strict CAPM would be misspecified since the parameters are not constant.

There is a simple procedure to test for parameter stability if the point where the parameters
changes is known. The test is specified by including a dummy for any parameter that may change and
testing the coefficient on the dummy variables for constancy.

Returning to the CAPM example, the standard specification is

Re
i = β1 +β2(RM

i −R f
i )+ εi

where RM
i is the return on the market, R f

i is the return on the risk free asset and Re
i is the excess return

on the dependent asset. To test whether the slope is different when (RM
i −R f

i ) < 0, define a dummy
Ii = I

[(RM
i −R f

i )<0] and perform a standard test of the null H0 : β3 = 0 in the regression

Re
i = β1 +β2(RM

i −R f
i )+β3Ii(RM

i −R f
i )+ εi.

If the breakpoint is not known a priori, it is necessary to test whether there is a break in the pa-
rameter at any point in the sample. This test can be implemented by testing at every point and then
examining the largest test statistic. While this is a valid procedure, the distribution of the largest test
statistic is no longer χ2 and so inference based on standard tests (and their corresponding distribu-
tions) will be misleading. This type of problem is known as a nuisance parameter problem. If the
null hypothesis (that there is no break) is correct, then the value of regression coefficients after the
break is not well defined. In the example above, if there is no break, then β3 is not identified (and
is a nuisance). Treatment of the issues surrounding nuisance parameters is beyond the scope of this
course, but interested readers should start see Andrews and Ploberger (1994).

3.13.2.2 Rolling and Recursive Parameter Estimates

Rolling and recursive parameter estimates are useful tools for detecting parameter instability in cross-
section regression of time-series data (e.g., asset returns). Rolling regression estimates use a fixed-
length sample of data to estimate β and then “roll” the sampling window to produce a sequence of
estimates.
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Definition 3.18 (m-sample Rolling Regression Estimates). The m-sample rolling regression estimates
are defined as the sequence

β̂ j =

 j+m−1∑
i= j

x′ixi

−1

x′iYi (3.106)

for j = 1,2, . . . ,n−m+1.

The rolling window length should be large enough so that parameter estimates in each window are rea-
sonably well approximated by a CLT but not so long as to smooth out any variation in β . 60-months is
a common window length in applications using monthly asset price data and window lengths ranging
between 3-months and 2-year are common when using daily data. The rolling regression coefficients
can be visually inspected for evidence of instability, and approximate confidence intervals (based on
an assumption of parameter stability) can be constructed by estimating the parameter covariance on
the full sample of n observations and then scaling by n/m so that the estimated covariance is appro-
priate for a sample of m observations. The parameter covariance can alternatively be estimated by
averaging the n−m+1 covariance estimates corresponding to each sample, Σ̂

−1
XX, jŜ jΣ̂

−1
XX, j, where

Σ̂XX, j = m−1
j+m−1∑

i= j

x′ixi (3.107)

and

Ŝ j = m−1
j+m−1∑

i= j

ε̂i, jx′ixi (3.108)

where ε̂i, j = Yi− x′iβ̂ j, and if the parameters are stable these methods for estimating the parameter
covariance should produce similar confidence intervals.

60-month rolling regressions of the BH portfolio in the 4-factor model are presented in figure
3.8 where approximate confidence intervals were computed using the re-scaled full-sample parameter
covariance estimate. While these confidence intervals cannot directly be used to test for parameter
instability, the estimate of the loadings on the market, SMB and HML vary more than their intervals
indicate these parameters should were they stable.

An alternative to rolling regressions is to recursively estimate parameters which uses an expanding
window of observations to estimate β̂ .

Definition 3.19 (Recursive Regression Estimates). Recursive regression estimates are defined as the
sequence

β̂ j =

( j∑
i=1

x′ixi

)−1

x′iYi (3.109)

for j = l,2, . . . ,n where l > k is the smallest window used.

Approximate confidence intervals can be computed either by re-scaling the full-sample parameter
covariance or by directly estimating the parameter covariance in each recursive sample. Documenting
evidence of parameter instability using recursive estimates is often more difficult than with rolling, as
demonstrated in figure 3.9
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Rolling Parameter Estimates in the 4-Factor Model
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Figure 3.8: 60-month rolling parameter estimates from the model BHe
i = β1 +β2VWMe

i +β3SMBi +
β4HMLi+β5MOMi+εi. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. These rolling estimates indicate that the market loading of the Big-High
portfolio varied substantially at the beginning of the samplefixed-length sample and that the loadings
on both SMB and HML may be time-varying.
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Recursive Parameter Estimates in the 4-Factor Model
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Figure 3.9: Recursive parameter estimates from the model BHe
i = β1 + β2VWMe

i + β3SMBi +
β4HMLi+β5MOMi+εi. Approximate confidence intervals were constructed by scaling the full sam-
ple parameter covariance. While less compelling than the rolling window estimates, these recursive
estimates indicate that the loading on the market and on HML may not be constant throughout the
sample.
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3.13.2.3 Normality

Normality may be a concern if the validity of the small-sample assumptions is important. The standard
method to test for normality of estimated residuals is the Jarque-Bera (JB) test which is based on two
higher order moments (skewness and kurtosis) and tests whether they are consistent with those of a
normal distribution. In the normal, the skewness is 0 (it is symmetric) and the kurtosis is 3. Let ε̂i be
the estimated residuals. Skewness and kurtosis are defined

ŝk =
n−1∑n

i=1 ε̂3
i

(σ̂2)
3
2

κ̂ =
n−1∑n

i=1 ε̂4
i

(σ̂2)2

The JB test is computed

JB =
n
6

(
sk2 +

1
4
(κ−3)2

)
and is distributed χ2

2 . If sk ≈ 0 and κ ≈ 3, then the JB should be small and normality should not be
rejected. To use the JB test, compute JB and compare it to Cα where Cα is the critical value from a
χ2

2 . If JB >Cα , reject the null of normality.

3.13.2.4 Heteroskedasticity

Heteroskedasticity is a problem if neglected. See section 3.12.4.

3.13.2.5 Influential Observations

Influential observations are those which have a large effect on the estimated parameters. Data, partic-
ularly data other than asset price data, often contain errors.24 These errors, whether a measurement
problem or a typo, tend to make β̂ unreliable. One method to assess whether any observation has an
undue effect on the sample is to compute the vector of “hat” matrices,

hi = xi(X′X)−1x′i.

This vector (which is the diagonal of PX) summarizes the influence of each observation on the es-
timated parameters and is known as the influence function. Ideally, these should be similar and no
observation should dominate.

Consider a simple specification where Yi = Xi + εi where Xi and εi are i.i.d. standard normal. In
this case the influence function is well behaved. Now suppose one xi is erroneously increased by 100.
In this case, the influence function shows that the contaminated observation (assume it is Xn) has a
large impact on the parameter estimates. Figure 3.10 contains four panels. The two left panels show
the original data (top) and the data with the error (bottom) while the two right panels contain the
influence functions. The influence function for the non-contaminated data is well behaved and each
observation has less than 10% influence. In the contaminated data, one observation (the big outlier),
has an influence greater than 98%.

24And even some asset price data, such as TAQ prices.
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Influential Observations
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Figure 3.10: The two left panels contain realizations from the data generating process Yi = Xi +
εi where a single Xi has been contaminated (bottom left panel). The two right panels contain the
influence functions of the Xi. If all data points were uniformly influential, the distribution of the
influence function should be close to uniform (as is the case in the top left panel). In the bottom right
panel, it is clear that the entire fit is being driven by a single Xi which has an influence greater than
.98.

Plotting the data would have picked up this problem immediately. However, it may be difficult to
determine whether an observation is influential when using multiple regressors because the regressors
for an observation may be “large” in many dimensions.

3.13.3 Improving estimation in the presence of outliers

Data may contain outliers for many reasons: someone entered an incorrect price on an electronic
exchange, a computer glitch multiplied all data by some large constant or a CEO provided an answer
out-of-line with other answers due to misunderstanding a survey question. The standard least-squares
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estimator is non-robust in the sense that large observations can have a potentially unbounded effect
on the estimated parameters. A number of techniques have been developed to produce “robust”
regression estimates that use weighted least squares to restrict the influence of any observation.

For clarity of exposition, consider the problem of estimating the mean using data that may be
contaminated with a small number of large errors. The usual estimator will be heavily influenced
by these outliers, and if outliers occur with any regularity in the data (suppose, for example, 1% of
data is contaminated), the effect of outliers can result in an estimator that is biased and in some cases
inconsistent. The simplest method to robustly estimate the mean is to use an α-trimmed mean where
α represents a quantile of the empirical distribution of the data.

Definition 3.20 (α-Trimmed Mean). The α-quantile trimmed mean is

µ̂α =

∑n
i=1YiI[CL≤Yi≤CU ]

n∗
(3.110)

where n∗ = n(1−α) =
∑n

i=1 I[−C<Yi<C] is the number of observations used in the trimmed mean.25

Usually α is chosen to be between .90 and .99. To use an α-trimmed mean estimator, first compute CL
the α/2-quantile and CU the 1−α/2-quantile of the of y. Using these values, compute the trimmed
mean as

A closely related estimator to the trimmed mean is the Winsorized mean. The sole difference
between an α-trimmed mean and a Winsorized mean is the method for addressing the outliers. Rather
than dropping extreme observations below CL and CU , a Winsorized mean truncates the data at these
points.

Definition 3.21 (Winsorized mean). Let Y ∗i denote a transformed version of Yi,

Y ∗i = max(min(Yi,CU),CL)

where CL and CU are the α/2 and 1−α/2 quantiles of Y . The Winsorized mean is defined

µ̂W =

∑n
i=1Y ∗i
n

. (3.111)

While the α-trimmed mean and the Winsorized mean are “robust” to outliers, they are not robust to
other assumptions about the data. For example, both mean estimators are biased unless the distribution
is symmetric, although “robust” estimators are often employed as an ad-hoc test that results based on
the standard mean estimator are not being driven by outliers.

Both of these estimators are in the family of linear estimators (L-estimators). Members of this
family can always be written as

µ̂
∗ =

n∑
i=1

wiYi

for some set of weights wi where the data, Yi, are ordered such that Yj−1 ≤ Yj for j = 2,3, . . . ,N.
This class of estimators obviously includes the sample mean by setting wi =

1
n for all i, and it also

includes the median by setting wi = 0 for all i except wm = 1 where m = (n+ 1)/2 (n is odd) or
wm = wm+1 = 1/2 where m = n/2 (n is even). The trimmed mean estimator can be constructed by

25This assumes that nα is an integer. If this is not the case, the second expression is still valid.
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setting wi = 0 if n≤ s or i≥ n− s and wi =
1

n−2s otherwise where s = nα is assumed to be an integer.
The Winsorized mean sets wi = 0 if n ≤ s or n ≥ N− s, wi =

s+1
n if n = s+ 1 or n = n− s− 1 and

wi =
1
n otherwise. Examining the weights between the α-trimmed mean and the Winsorized mean,

the primary difference is on the weights wk+1 and wn−k−1. In the trimmed mean, the weights on
these observation are the same as the weights on the data between these points. In the Winsorized
mean estimator, the weights on these observations are k+1

n reflecting the censoring that occurs at these
observations.

3.13.3.1 Robust regression-based estimators

Like the mean estimator, the least-squares estimator is not “robust” to outliers. To understand the
relationship between L-estimators and linear regression, consider decomposing each observation into
its mean and an additive error,

µ̂
∗ =

n∑
i=1

wiYi

=
n∑

i=1

wi (µ + εi)

=
n∑

i=1

wiµ +
n∑

i=1

wiεi

A number of properties can be discerned from this decomposition. First, in order for µ∗ to be unbiased
it must be the case that

∑n
i=1 wi = 1 and

∑n
i=1 E[wiεi] = 0. All of the linear estimators satisfy the

first condition although the second will depend crucially on the distribution of the errors. If the
distribution of the errors is symmetric then the Winsorized mean, the α-trimmed mean or even median
are unbiased estimators of the mean. However, if the error distribution is not symmetric, then these
estimators are likely to be biased. Unlike the usual case where E[wiεi] = wiE[εi], the weights are
functions of the errors and the expectation of the product of the expectations is not the expectation of
the product. Second, weights on the observations (Yi) are the same as weights on the errors, εi. This
relationship follows from noticing that if Yj ≤ Yj+1, then it must be the case that ε j ≤ ε j+1.

Robust estimators in linear regression models require a two-step or iterative procedure. The dif-
ference between robust mean estimators and robust regression arises since if Yi has a relationship to a
set of explanatory variables xi, then orderings based on Yi will not be the same as orderings based on
the residuals, εi. For example, consider the simple regression

Yi = βXi + εi.

Assuming β > 0, the largest Yi are those which correspond either the largest Xi or εi. Simple trimming
estimators will not only trim large errors but will also trim Yi that have large values of Xi. The left
panels of figure 3.11 illustrate the effects of Windsorization and trimming on the raw data. In both
cases, the regression coefficient is asymptotically biased (as indicated by the dotted line) since trim-
ming the raw data results in an error that is correlated with the regressor. For example, observations
with the largest Xi values and with positive εi more likely to be trimmed. Similarly, observations for
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the smallest Xi values and with negative εi are more likely to be trimmed. The result of the trimming
is that the remaining εi are negatively correlated with the remaining Xi.

To avoid this issue, a two-step or iterative procedure is needed. The first step is used to produce
a preliminary estimate of β̂ . OLS is commonly used in this step although some other weighted least-
squares estimator may be used instead. Estimated residuals can be constructed from the preliminary
estimate of β (ε̂i =Yi−xiβ̂ ), and the trimming or Windsorizing is done on these preliminary residuals.
In the case of α-trimming, observations with the largest errors (in absolute value) are dropped, and
the α-trimmed regression is estimated using only the observations with CL < ε̂i <CU .

Winsorized regression also uses the first step regression to estimate ε̂ , but, rather than dropping
observations, errors larger than CU are set to ε̂U and errors smaller than CL are set to ε̂L. Using these
modified errors,

ε̂
?
i = max(min(ε̂i,CU),CL)

a transformed set of dependent variables is created, Y ?
i = xiβ̂ + ε?i . The Winsorized regression co-

efficients are then estimated by regressing Y ?
i on xi. The correct application of α-trimming and

Windsorization are illustrated in the bottom two panels of figure 3.11. In the α-trimming exam-
ples, observations marked with an x were trimmed, and in the Windsorization example, observations
marked with a • were reduced from their original value to either CU or CL. It should be noted that
while both of these estimators are unbiased, this result relies crucially on the symmetry of the errors.

In addition to the two-step procedure illustrated above, an iterative estimator can be defined by

starting with some initial estimate of β̂ denoted β̂
(1)

and then trimming (or Windsorization) the data

to estimate a second set of coefficients, β̂
(2)

. Using β̂
(2)

and the original data, a different set of

estimated residuals can be computed ε̂i = Yi− xiβ̂
(2)

and trimmed (or Winsorized). Using the new

set of trimmed observations, a new set of coefficients, β̂
(3)

, can be estimated. This procedure can be

repeated until it converges – max
∣∣∣∣β̂ (i)− β̂

(i−1)
∣∣∣∣.26

Both α-trimmed and Winsorized regression are special cases of a broader class of “robust” regres-
sion estimators. Many of these robust regression estimators can be implemented using an iterative
procedure known as Iteratively Re-weighted Least Squares (IRWLS) and, unlike trimmed or Win-
sorized least squares, are guaranteed to converge. For more on these estimators, see Huber (2004) or
Rousseeuw and Leroy (2003).

3.13.3.2 Ad-hoc “Robust” Estimators

It is not uncommon to see papers that use Windsorization (or trimming) in the academic finance
literature as a check that the findings are not being driven by a small fraction of outlying data. This
is usually done by directly Windsorizing the dependent variable and the regressors. While there is no
theoretical basis for these ad-hoc estimators, they are a useful tool to ensure that results and parameter
estimates are valid for “typical” observations as well as for the full sample. However, if this is the goal,
other methods, such as visuals inspections of residuals or residuals sorted by explanatory variables,
are equally valid and often more useful in detecting problems in a regression.

26These iterative procedures may not converge due to cycles in {β̂ ( j)}.
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Correct and incorrect use of “robust” estimators
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Figure 3.11: These four panels illustrate correct and incorrect α-trimming (left) and Windsorization
(right). In both cases, the DGP was Yi = Xi + εi where Xi and εi were independent standard normal
random variables. The top panels show incorrect trimming based on the unmodified data, and the
bottom panels show correct trimming based on an initial estimate of the slope.

3.13.3.3 Inference on “Robust” Estimators

It may be tempting to use OLS or White heteroskedasticity robust standard errors in “robust” regres-
sions. These regressions (and most L-estimators) appear similar to standard least-squares estimators.
However, there is an additional term in the asymptotic covariance of the estimated regression coef-
ficients since the trimming or Windsorization point must be estimated. This term is related to the
precision of the trimming point and is closely related to the uncertainty affecting the estimation of a
quantile. Fortunately, bootstrapping can be used (under some mild conditions) to estimate the covari-
ance of the regressors.
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3.14 Machine Learning

Machine learning approaches to regression, also known as supervised learning, address two key chal-
lenges:

• Variable selection when the number of candidate variables is large. In machine learning, vari-
ables are often called features, and the collection of all features is called the feature space. Most
machine learning algorithms are capable of modeling data sets where the number of variables
exceeds the number of observations available.

• Optimizing model parameters to perform well in out-of-sample prediction. In most applica-
tions, this optimization makes an explicit trade-off between bias and variance, and most ML
approaches to regression use biased estimators that have lower parameter variance than vanilla
OLS. This reduction in variance, especially for parameters that have a small effect relative to
their uncertainty, improves out-of-sample prediction at the cost of some bias.

ML approaches achieve these goals using cross-validation to select models and parameter values that
perform well both in- and out-of-sample. These alternative approaches generally provide methods to
jointly select relevant variables and estimate parameters. Some methods make use of bootstrapping to
improve the reliability of the models in out-of-sample data. Ultimately these approaches all produce
a standard linear regression model where the coefficients are not usually estimated using standard
OLS. The most useful strategies tend to introduce a limited amount of bias by shrinking regression
coefficients toward 0 to mitigate the cost of parameter uncertainty.

3.14.1 Best Subset Regression

Best Subset Regression is the simplest method to construct a model given a set of predictors. Sup-
pose you have p candidate variables X1,i, . . . ,Xp,i. Best Subset Regression finds the combination of
variables in this set that optimizes the model’s fit according to some criteria, for example, the cross-
validated SSE or BIC. Best Subset Regression begins by finding the model that produces the smallest
in-sample SSE, or equivalently the largest R2, using k of the p variables. Let this model be denoted

Mk. This step involves fitting
(

p
k

)
distinct models. The best model is selected for each possible

value of k = 1,2, . . . , p. The initial inputs are a set of p+1 distinct modelsM0,M1, . . . ,Mp where
M0 is a model that contains no predictors. The Best Subset Regression is chosen by comparing the
performance of these p+ 1 models using some criterion, for example, the cross-validated SSE, and
selecting the model that performs the best. There are two important issues with Best Subset Regres-
sion. First, it can only be used when the set of candidate predictors p is moderate (≤ 30) since there
are 2p− 1 distinct models that must be estimated. Second, the coefficients of the best model are es-
timated by OLS. OLS estimates always overfit the sample used to estimate the parameters, and the
in-sample overfitting reduces the out-of-sample performance of the models.

Algorithm 3.11 (Best Subset Regression).

1. For k ∈ {0,1, . . . , p} estimate each of the
(

p
k

)
distinct models containing k variables, saving

the model that produces the smallest SSE asM j, j = 0, . . . , p .
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2. Select the Best Subset Regression as the model from the set {M0,M1, . . . ,Mp} that minimizes
some criterion such as the cross-validated SSE.

3.14.2 Forward, Backward, and Hybrid Stepwise Regression

Best Subset Regression cannot be used when p is large. Stepwise model building is an alternative
the builds the models M0,M1, . . . ,Mp sequentially. Forward stepwise regression begins with no
variables selected. Each of the excluded variables, p in total, are tried one at a time, and the regressor
that produces the best fit is retained inM1. The second model,M2, is then selected by adding each
of the p−1 variables that were not included inM1 and is defined as the model that produces the best
in-sample fit. This process is repeated so thatM j+1 adds one of the p− j variables toM j that were
not included inM j. The output of the first step is a set of p+1 modelsM0,M1, . . .Mp where larger
models always nest smaller models. The final model is selected from the set of candidate models by
optimizing some criterion such as the cross-validated SSE.

Algorithm 3.12 (Forward Stepwise Regression).

1. Begin with the empty model,M0.

2. For j ∈ {0, . . . , p−1}, construct modelM j+1 as the model the minimizes the SSE by adding
each of the p− j variables to the variables included in modelM j.

3. Select the Forward Stepwise Regression as the model from the set {M0,M1, . . . ,Mp} that
minimizes some criterion such as the cross-validated SSE.

Backward stepwise regression operates in the opposite direction. Begin with the model that con-
tains all variables Mp. The next smaller model, Mp−1 is defined as the model that minimizes the
SSE considering each of the p models that drops a single variable fromMp. This process continues
where M j is defined as the model that maximizes the in-sample fit using j of the j + 1 variables
included inM j+1. Like forward stepwise regression, backward stepwise regression produces a set of
p+1 modelsM0,M1, . . .Mp. The best model is then selected from this set of candidate models by
optimizing some criterion function.

Algorithm 3.13 (Backward Stepwise Regression).

1. Begin with the complete model,Mp.

2. For j ∈ {p−1, p−2, . . . ,0}, construct modelM j as the model the minimizes the SSE by re-
moving each of the j variables, one at a time, of the variables included in modelM j+1.

3. Select the Backward Stepwise Regression as the model from the set {M0,M1, . . . ,Mp} that
minimizes some criterion such as the cross-validated SSE.

Hybrid approaches combine the two. For example, suppose forward stepwise regression is used to
selectMk where k < p. Backward stepwise regression can be used on the k included regressors inMk
to produce a new sequence of modelsMk

j for j = k−1,k−2, . . .1. This sequence may be distinct from
what forward or backward stepwise regression would arrive at alone. The hybrid approach generally
produces a larger set of candidate models while remaining computationally tractable as long as the
number of direction switches is small. This larger set of candidate models has an increased chance
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of including the Best Subset Regression than either forward or backward stepwise regression alone.
The primary challenge of the hybrid approach is determining the number of direction reversals to use,
although, in practice, this is often dictated by the computational time available. Like both forward and
backward stepwise regression, the final model is selected from the enlarged pool of candidate models
by optimizing some criteria.

3.14.3 Ridge Regression

Ridge regression differs from best subset and stepwise regression in two ways: it does not select
variables, and coefficients are not estimated using standard OLS.

Definition 3.22 (Ridge Regression).
The ridge regression estimator with tuning parameter ω is defined as the solution to

argmin
β

(y−Xβ )′ (y−Xβ ) subject to
k∑

j=1

β
2
j ≤ ω. (3.112)

This constrained problem is equivalent to the unconstrained problem

argmin
β

(y−Xβ )′ (y−Xβ )+λ

k∑
j=1

β
2
j (3.113)

where ω and λ take different values and have an inverse relationship (i.e., large values of ω corre-
spond to small values of λ ). The solution to this optimization problem is

β̂
Ridge

=
(
X′X+λ Ik

)−1 X′y (3.114)

where k is the number of regressors included in the model.
Recall that the OLS estimator is β̂ = (X′X)

−1 X′y. The effect of the ridge penalty is simple to
deduce from eq. (3.114) since λ > 0. The term X′X+λ Ik must always be larger, in a matrix sense,
than X′X since λ Ik is a diagonal matrix with positive values along its diagonal. It must then be the
case that (X′X+λ Ik)

−1 is smaller than X′X, again in a matrix sense, and so the ridge coefficient

estimates β̂
Ridge

are always closer to 0 than the OLS estimates β̂ . Ridge regression is known as a
shrinkage estimator since the parameter estimates pull the parameters towards the shrinkage target of
0. In practice shrinkage introduces some bias in the coefficient but reduces their variance, and ridge
regression often outperforms OLS in out-of-sample applications.

Ridge regression depends on a single tuning parameter, λ , which controls how bias and variance
are traded off. The optimal value is determined by trying several different values and selecting the
value λ ? that produces the smallest cross-validated SSE. Note that ridge regression does not provide
any guidance as to which variables to include in the model, and so some form of model selection is
usually needed. The optimal choice of λ depends on the number of regressors included in the model,
and so it must be re-optimized in each distinct model. There are many variants of ridge regression
that change the penalty structure. For example, one variant allows the shrinkage to be applied to
only a subset of the included variables. This penalization structure can be useful if some variables
are strong predictors, while others are less useful. This penalty structure can be further generalized to
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apply different amounts of shrinkage to distinct groups of regressors or even to impose cross-regressor
shrinkage where the total magnitude of a set of the regressors in the model is affected.27

3.14.4 LASSO, Forward Stagewise Regression, and LARS

LASSO (least absolute shrinkage and selection operator), Forward Stagewise Regression, and LARS
(Least Angle Regression) are relatively new methods the embed both variable selection and shrinkage
into a unified approach (Tibshirani, 1996; Efron, Hastie, Johnstone, and Tibshirani, 2004). LASSO is
similar to ridge regression and can be written as a constrained least square problem.

Definition 3.23 (LASSO). The LASSO estimator with tuning parameter ω is defined as the solution
to

argmin
β

(y−Xβ )′ (y−Xβ ) subject to
k∑

j=1

∣∣β j
∣∣< ω (3.115)

The key difference is that the constraint is on the sum of the absolute value of the coefficients and
not their squared values. The LASSO estimator adds an additional constraint to the least-squares
problem that limits the magnitude of regression coefficients that produces an interpretable model.
Regressors that have little explanatory power will have coefficients exactly equal to 0 (and hence are
excluded). This means that LASSO both estimates parameters and selects variables – any variable
with a coefficient that is exactly 0 is effectively removed from the model.

The LASSO constrained minimization problem is dual to a penalized least-squares problem,

argmin
β

(y−Xβ )′ (y−Xβ )+λ

k∑
j=1

∣∣β j
∣∣ (3.116)

where ω and λ have an inverse relationship. While LASSO has a closed form solution for any value
of λ ,the estimator is not simple to describe in a single equation.

Forward Stagewise Regression is closely related to LASSO and illustrates the fundamental prin-
ciple used in variable selection. Estimation begins with a model that contains no regressors. The
algorithm then uses an iterative method to build the regression in small steps by expanding the regres-
sion coefficients (small enough that the coefficient expansions should be virtually continuous).

27The complete formulation of a ridge regression is

argmin
β

(y−Xβ )(y−Xβ )+(β −β 0)
′
Λ(β −β 0)

where β 0 is the shrinkage target and Λ is a positive definite matrix that controls the amount of shrinkage. This form
nests the classic specification when Λ = λ Ik and β 0 = 0. If Λ is not diagonal, then the estimator will apply cross-variable
penalties. The solution to the general problem is

β̂
Ridge

= (X′X+Λ)
−1

(X′y+Λβ 0) .

This shows that the OLS solution is recovered when Λ = 0. If Λ is very large, then β̂
Ridge ≈ Λ

−1
Λβ 0 = β 0 and the

estimate depends only on the shrinkage target β 0.
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Algorithm 3.14 (Forward Stagewise Regression). The Forward Stagewise Regression (FSR) estima-
tor is defined as the sample paths of β̂ defined by

1. Begin with β̂
(0)

= 0, and errors ε(0) = y

2. Compute the correlations of the residual at iteration i with the regressors, c(i) = Corr
[
X,ε(i)

]
3. Define j to be the index of the largest element of |c(i)| (the absolute value of the correlations),

and update the coefficients where β̂
(i+1)
j = β̂

(i)
j +η · sign

(
c j
)

and β̂
(i+1)
l = β̂

(i)
l for l 6= j where

η is a small number (should be much smaller than c j).28

4. Compute ε(i+1) = y−Xβ̂
(i+1)

5. Repeat steps 2 – 4 until all correlations are 0 (if ε(i) = 0 than all correlations are 0 by defini-
tion).

The coefficients of FSR are determined by taking a small step in the direction of the highest
correlation between the regressors and the current error, and so the algorithm will always take a step
in the direction of the regressor that has the most (local) explanatory power over the regressand. The
final stage FSR coefficients will be equal to the OLS estimates as long as the number of regressors
under consideration is smaller than the number of observations. The LASSO estimate is usually
computed using the LARS algorithm, which simplifies FSR by finding the exact step size needed
before the next variable enters the regression.

Algorithm 3.15 (Least Angle Regression). The Least Angle Regression (LARS) estimator is defined
as the sample paths of β̂ defined by:

1. Begin with β̂
(0)

= 0, and errors ε(0) = ỹ where

ỹ =
y− ȳ

σ̂y
(3.117)

and

x̃i =
xi− x̄i

σ̂x
(3.118)

are studentized versions of the original data.29

2. Compute the correlations of the residual at state i with the regressors, c(i)=Corr
[
X̃(i),ε(i)

]
and

define j to be the index of the largest element of |c(i)| (the absolute value of the correlations).

3. Define the active set of regressors X̃(1) = x̃ j.

28η should be larger than some small value to ensure the algorithm completes in finitely many steps, but should always
be weakly smaller than |c j|.

29LARS can be implemented on non-studentized data be replacing correlation with c(i) = X(i)′ε(i).
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4. Move β̂
(1)

= β̂ j towards the least squares estimate of regressing ε(0) on X̃(1) until the correla-

tion between ε(1) = ỹ− X̃(1)β̂
(1)

and some other x̃k is equal to the correlation between ε(1) and
x̃ j.

5. Add x̃k to the active set of regressors so X̃(2) =
[
x̃ j, x̃k

]
.

6. Move β̂
(2)

=
[
β̂ j β̂k

]
towards the least squares estimate of regressing ε(1) on X̃(2) until the

correlation between ε(2) = ỹ− X̃(2)β̂
(2)

and some other x̃l is equal to the correlation between
ε(2) and X̃(2).

7. Repeat steps 5 – 6 by adding regressors to the active set until all regressors have been added or
n steps have been taken, whichever occurs first.

The algorithm of LARS describes the statistical justification for the procedure – variables are
added as soon as they have the largest correlation. Once the active set contains two or more regres-
sors, the maximum correlation between the error and all regressors will be the same since regression
coefficients are expanded in a manner that keeps the correlation identical between the error and any
regressors in the active set. Efron, Hastie, et al. (2004) proposes a new algorithm that allows the
entire path of LASSO, FSR, and LARS estimates to be quickly computed in models that contain a
large number of candidate regressors. LASSO differs from LARS in one technical aspect, although
they are very similar in practice.

These models are deeply related as shown Efron, Hastie, et al. (2004) and Hastie et al. (2007). All
three can be used for model selection once a stopping rule (FSR, LARS) or the penalty (λ , LASSO)
has been selected. k-fold cross-validation is commonly used to choose these values. Note that the
usual standard OLS errors and t-stats are no longer correct since these estimators are constrained
versions of least squares. Tibshirani (1996) proposes a bootstrap method that can be used to compute
standard errors and make inference on LASSO estimators.30

Figure 3.12 illustrates how ridge regression and LASSO estimate parameters. Both show the
OLS estimate β̂ surrounded by ellipsoids the trace iso-SSE curves – that is, values of β1 and β2 that
produce the same regression fit. The estimators are defined as the point where the smallest SSE is
just tangent to the constraint. The ridge regression shrinks the estimate towards zero in a non-uniform
way. This happens since the regressors are correlated. Ridge regression produces an estimate where
both coefficients are non-zero. LASSO, on the other hand, estimates β2 to be exactly. This happens
since non-zero β1provides a larger reduction in the SSE than β2, at least near the point (0,0) . In
general, ridge regression will never estimate any coefficients to be exactly 0 except when the OLS
coefficient is exactly 0. LASSO frequently estimates coefficients to be zero since the cost of adding a
small amount of a coefficient near zero is linear in β while the gain in terms of the SSE is quadratic
in β (i.e., ∝ β 2).

Figure 3.13 shows that paths of both the ridge regression and LASSO estimators are the restriction
parameter ω is reduced. The model estimated regresses the return on the Big-High portfolio on the
four factors, VWMe, SMB, HML, and MOM. The paths begin with ω = 0. As the constraint is
relaxed, the parameters converge towards the OLS estimates, which limit cases as ω increases. There

30The standard errors subsequent to a selection procedure using GtS, StG, or IC are also not correct since tests have
been repeated. In this regard, the bootstrap procedure should be more accurate since it accounts for the variation due to
the selection, something not usually done in traditional model selection procedures.
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Figure 3.12: The left panel shows the ridge regression restriction for a specific value of ω along with
three lines that trace combinations of β1 and β2 that produce the same model SSE. The ridge estimate
is defined as the point where the SSE is just tangent to a restriction. The right shows the LASSO
constraint along with the iso-SSE curves for the same data generating process.

is one clear distinction between the two paths. The paths from ridge regression evolve smoothly as ω

increases. All coefficients except SMB are different from zero once ω > 1/8. The LASSO paths have
a distinct kinked shape. These kinks are points where the correlation between one excluded regressor
and the included regressor(s) equalize so that the active set of regressors increases. The market is the
strongest predictor, followed by the value factor. Momentum enters the model for small values of the
penalty parameter, and size has a non-zero coefficient only at the OLS estimate (and then very small).
The dashed line in each plot indicates that optimal choice ω? selected using 5-fold cross-validation.
The cross-validated penalty parameter suggests that little shrinkage is needed. This occurs since the
sample size is large enough that parameters, even small values, are precisely estimated.

3.14.5 Regression Trees and their Refinements

Regression Trees build models using only dummy variables. Constructing a regression tree begins by
splitting the data into two groups using the values in regressors as possible split values. The model is
constructed by splitting the observations into two groups using on all possible values of each regressor.
The split that minimizes the SSE is retained, and the two groups are called leaves. The algorithm is
then rerun on each leaf again, splitting on all possible values in each of the variables included in the
model. This process of splitting into two leaves continues until either the homogeneity in the group
as measures by the within-group MSE is sufficiently low, or the number of observations in a leaf falls
below some prespecified value.

Figure 3.14 shows the first three levels of a model for the returns on the Big-High portfolio on
the four factor portfolios. Splitting the data first on the market produced the largest gains, and the
optimal split value was very near zero. The two leaves were then split according to the market into
four groups corresponding to very low market returns (≤ −7.17), negative market returns (−7.17 <
V MW ≤ −0.81), positive market returns (−0.81 < V MW ≤ 3.78), and very high market returns
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Figure 3.13: The top panel shows the path of the ridge regression estimates from the four factor model
BHe = β1 +β2VWMe

i +β3SMBi +β4HMLi +β5MOMi + εi. The penalty parameter ω is increased
from zero to the value that produces the OLS estimate. The bottom panel contains the path of the
LASSO estimates as the restriction is decreased. The kinks indicate points where a parameter switches
from being exactly zero to a non-zero value.
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V W M e <= -12.82
mse = 34.75

samples = 36

V W M e <= -2.27
mse = 5.96

samples = 204

H M L <= 1.12
mse = 5.12

samples = 294

V W M e <= 8.07
mse = 10.86

samples = 152

V W M e <= -7.17
mse = 17.09

samples = 240

V W M e <= 3.78
mse = 11.22

samples = 446

V W M e <= -0.81
mse = 24.61

samples = 686

Figure 3.14: A regression tree where the left-hand-side variable is the return on the Big-High portfolio
and the model is built using the four factors: VWMe, SMB, HML, and MOM. The first and second
splits used the market portfolio to bin the returns into four regions ranging from very low to very high.
The final level splits used different variables so that the terminal leaves depend on both the market
and the size factor.

(> 3.78%). If the tree was stopped at this node, the regression selected would be

BHe = β1I[VWMe
i ≤−7.17] +β2I[−7.17<VWMe

i ≤−0.81] +β3I[−0.81<VWMe
i ≤3.78] +β4I[VWMe>3.78]+ εi

The estimates of the parameters are simply the within-group means. The final level further splits
the data into eight leaves (not shown). Three of the final level splits used the market return to split
the negative returns further and to define an extreme positive return leaf. The other split preferred
to use value. This final regression model would have eight terms constructed using combinations of
restrictions on the return on the market factor and the return of the value factor.

Regression trees have step-function like behavior and frequently are not well suited to analyz-
ing continuous-valued variables using continuously values regressors. While plain regression threes
should usually be avoided, four refinements, pruning, Random Forests, bagging, and boosting all pro-
duce improvements in regression-tree models. Figure 3.15 compares a 2-level tree with OLS when
modeling the return of the Big-High portfolio using the excess market return. The tree approximates
the regression line as a step function. While this fit is not a terrible description of the data near 0,
there are obvious deficiencies in the tails.

3.14.5.1 Improving Regression Trees

Three techniques are commonly used to improve regression trees: pruning, bagging, boosting, and
Random Forests. Pruning a tree removes nodes that make a negligible improvement to the in-sample
fit and often decrease out-of-sample fit. Pruning is implemented by optimizing the modified objective
function
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Figure 3.15: The regression tree implied by the first two splits and the OLS fit of the excess returns
on the Big-High portfolio on the market.

n∑
i=1

(
Yi− f̂ (xi)

)2
+α |T |

where f̂ (xi) is the predicted value for a given tree and |T |is the number of terminal nodes in the tree.
Pruning starts with a large tree with T0nodes that is only terminated when either the number of nodes
hits some threshold, the maximum number of levels is reached, or a SSE-based stopping criterion is
met. For values of α on a grid of plausible values

{
α1 < α2 < .. . < αq

}
the tree that minimizes the

modified objective function is selected. The preferred value of α̂ is chosen from this grid using k-fold
cross-validation. Finally, the pruned tree is estimated by minimizing the modified objective function
using α̂ on the original sample.

Bagging makes use of B bootstrap samples to the parameters of multiple trees. Each tree can
then be used to generate predictions for any value of the regressor x. These predictions are then be
averaged to produce the bagged forecast. Note that each tree may have both a different structure and
parameter values. While the forecasts will tend to be similar, they are not perfectly correlated, and
the average forecast has a lower variance than any of the individual forecasts.

Algorithm 3.16 (Bagging Regression Trees). A bagged prediction from a regression tree is con-
structed following:

1. For i = 1,2, . . . ,B generate a bootstrap sample from (Yi,xi) and fit a regression tree to the
bootstrapped sample.

2. Using the B trees, construct the forecast as

f̂ (x) = 1/B

B∑
i=1

f̂i (x)

where fi (x) is the prediction from the tree estimated using bootstrap sample i.

Random Forests make use of randomization by selecting a subset of the available regressors when
estimating a tree. When the number of regressors p is large, most trees will tend to have a very
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similar structure even when fit to bootstrapped samples. This structure arises since strong predictors
will always be selected in the first levels of the tree. The Random Forest solution is to estimate a tree
using a bootstrap sample that also random selects ≈ √p regressors. This fitting of trees to random
subsamples of the data is repeated many times, and the Random Forecast forecast is the average of
forecasts of these models. The distinct trees tend to have low correlation, which translates into large
gains from averaging.

Algorithm 3.17 (Random Forests). A Random Forest of regression trees is constructed following:

1. For i = 1,2, . . . ,B generate a bootstrap sample of the data with a random subset of k ≈ √p
regressors and fit a regression tree using the selected subset of the regressors.

2. Using the B trees, construct the forecast as

f̂ (x) = 1/B

B∑
i=1

f̃i (x)

where f̃i is the prediction using random regressor subset i.

Note that a Random Forest is identical to a bagged regression tree when k = p regressors are used
to build each tree.

Boosting also fits multiple trees, only sequentially to the same data. A boosted tree begins by
fitting a small tree with d nodes to the data and computing the residuals. It then fits a new tree to the
residuals. This is repeated many times. The trees are then combined using a tuning parameter λ as

f̂ (x) = 1/B

B∑
i=1

λ f̈i (x)

where f̈1is the tree fit to the original data and f̈ j, j ≥ 2 is the prediction from the tree estimated using
the residuals of the form

ε̂i, j = ε̂i, j−1−λ f j−1 (xi)

where ε̂i,0 = Yi.

Algorithm 3.18 (Bagging Regression Trees). Begin with ε̂i,0 = Ỹi where Ỹi is the standardized version
of Yi. For j = 1, . . . ,B :

1. Fit a regression tree using
(
εi, j−1,xi

)
with d splits and generate ε̂i, j = ε̂i, j−1−λ f̈ j (xi) where

f̈ jis the tree fit in iteration j.

2. Produce the boosted forecast as

f̂ (x) = 1/B

B∑
i=1

λ f̈i (X) .

Boosting makes uses of three tuning parameters, λ , d, and B. λ is usually set to some small
value in the range (0.001,0.10). Small values of λ slow the learning since much of the forecast is
down-weighted. d, the number of terminal nodes in a tree, is also set to some small number, often



210 Analysis of Cross-Sectional Data

1. d determines the maximum number of interactions allowed between the regressors when building
the dummy-variable representation of a regression tree. Finally, B is usually set to some large value,
often in the range of 1,000 – 10,000. These three parameters all interact and are substitutes – increases
in one should usually be matched by decreases in the others when building optimal predictions. All
three can be selected using a grid of values and k-fold cross-validation.

3.15 Projection

Least squares has one further justification: it is the best linear predictor of a dependent variable where
best is interpreted to mean that it minimizes the mean square error (MSE). Suppose f (x) is a function
of only x and not Y . Mean squared error is defined

E[(Y − f (x))2].

Assuming that it is permissible to differentiate under the expectations operator, the solution is

E[Y − f (x)] = 0,

and, using the law of iterated expectations,

f (x) = E[y|x].
If f (x) is restricted to include only linear functions of x then the problem simplifies to choosing β to
minimize the MSE,

E[(Y −xβ )2]

and differentiating under the expectations (again, when possible),

E[x′(Y −xβ )] = 0

and β̂ = E[x′x]−1E[x′y]. In the case where x contains a constant, this allows the best linear predictor
to be expressed in terms of the covariance matrix of y and x̃ where the˜indicates the constant has been
excluded (i.e., x = [1 x̃]), and so

β̂ = Σ
−1
XX ΣXy

where the covariance matrix of [Y x̃] can be partitioned

Cov([Y x̃]) =
[

ΣXX ΣXy

Σ
′
Xy Σyy

]
Recall from assumptions 3.7 that {xi,εi} is a stationary and ergodic sequence and from assumption

3.8 that it has finite second moments and is of full rank. These two assumptions are sufficient to justify
the OLS estimator as the best linear predictor of Y . Further, the OLS estimator can be used to make
predictions for out of sample data. Suppose Yn+1 was an out-of-sample data point. Using the OLS
procedure, the best predictor of Yn+1 (again, in the MSE sense), denoted Ŷn+1 is xn+1β̂ .



3.15 Projection 211

Weights of an S&P 500 tracking portfolio
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Figure 3.16: Plot of the optimal tracking portfolio weights. The optimal tracking portfolio is long all
asset and no weight is greater than 25%.

3.15.1 Tracking Error Minimization

Consider the problem of setting up a portfolio that would generate returns as close as possible to the
return on some index, for example, the FTSE 100. One option would be to buy the entire portfolio
and perfectly replicate the portfolio. For other indices, such as the Wilshire 5000, which consists of
many small and illiquid stocks, complete replication is impossible, and a tracking portfolio consisting
of many fewer stocks must be created. One method to create the tracking portfolios is to find the best
linear predictor of the index using a set of individual shares.

Let xi be the returns on a set of assets and let Yi be the return on the index. The tracking error
problem is to minimize the

E[(Yi−Xiw)2]

where w is a vector of portfolio weights. Portfolio tracking has the same structure as the best linear
predictor and the optimal weights are ŵ = (X′X)−1X′y.

Data between January 5, 2010, and December 31, 2019, was used, a total of 2,515 trading days.
The regression specification is simple: the return on the S&P is regressed on the returns on the sector
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ETF returns,

RSP500
i =

30∑
j=1

w jRi j + εi

where the portfolios are ordered alphabetically (not that this matters). The portfolio weights (which
need not sum to 1) are presented in figure 3.16. All funds have positive weights, and the maximum
just under 25%. More importantly, this portfolio has a correlation of 99.5% with the return on the
S&P 500. Its return tracks the return of the S&P to within 1.4% per year. The tracking error variance
is much smaller than the 14.7% annualized volatility of the S&P over this period.

While the regression estimates provide the solution to the unconditional tracking error problem,
this estimator ignores two important considerations: how should stocks be selected, and how condi-
tioning information (such as time-varying covariance) can be used. The first issue, which stocks to
choose, is difficult and is typically motivated by the cost of trading and liquidity. The second issue
will be re-examined using Multivariate GARCH and related models in a later chapter.

3.A Selected Proofs

Theorem 3.1.

E
[
β̂ |X

]
= E

[(
X′X

)−1 X′y|X
]

= E
[(

X′X
)−1 X′Xβ +

(
X′X

)−1 X′ε|X
]

= β +E
[(

X′X
)−1 X′ε|X

]
= β +

(
X′X

)−1 X′E [ε|X]

= β

Theorem 3.2.

V
[
β̂ |X

]
= E

[(
β̂ −E

[
β̂ |X

])(
β̂ −E

[
β̂ |X

])′
|X
]

= E
[(

β̂ −β

)(
β̂ −β

)′
|X
]

= E
[(

X′X
)−1 X′εε

′X
(
X′X

)−1 |X
]

=
(
X′X

)−1 X′E
[
εε
′|X
]

X
(
X′X

)−1

= σ
2 (X′X)−1 X′InX

(
X′X

)−1

= σ
2 (X′X)−1 X′X

(
X′X

)−1

= σ
2 (X′X)−1
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Theorem 3.3. Without loss of generality C = (X′X)
−1 X+D′ where D′ must satisfy D′X = 0 and

E [D′ε|X] = 0 since

E
[
β̃ |X

]
= E [Cy|X]

= E
[((

X′X
)−1 X′+D′

)
(Xβ + ε) |X

]
= β +D′Xβ +E

[
D′ε|X

]
and by assumption Cy is unbiased and so E [Cy|X] = β .

V
[
β̃ |X

]
= E

[((
X′X

)−1 X′+D′
)

εε
′
(

D+X
(
X′X

)−1
)
|X
]

= E
[(

X′X
)−1 X′εε

′X
(
X′X

)−1 |X
]
+E

[
D′εε

′D|X
]
+E

[
D′εεX

(
X′X

)−1 |X
]
+E

[(
X′X

)−1 X′εεD|X
]

= σ
2 (X′X)−1

+σ
2D′D+σ

2D′X
(
X′X

)−1 |X+σ
2 (X′X)−1 X′D

= V
[
β̂ |X

]
+σ

2D′D+0+0

= V
[
β̂ |X

]
+σ

2D′D

and so the variance of β̃ is equal to the variance of β̂ plus a positive semi-definite matrix, and so

V
[
β̃ |X

]
−V

[
β̂ |X

]
= σ

2D′D≥ 0

where the inequality is strict whenever D 6= 0.

Theorem 3.4.
β̂ = β +

(
X′X

)−1 X′ε

and so β̂ is a linear function of normal random variables ε , and so it must be normal. Applying the
results of Theorems 3.1 and 3.2 completes the proof.

Theorem 3.5.

β̂ −β = (X′X)
−1 X′ε and ε̂ = y−X(X′X)

−1 X′y = MXy = MXε , and so

E
[(

β̂ −β

)
ε̂
′|X
]
= E

[(
X′X

)−1 X′εε
′MX|X

]
=
(
X′X

)−1 X′E
[
εε
′|X
]

MX

= σ
2 (X′X)−1 X′MX

= σ
2 (X′X)−1

(MXX)′

= σ
2 (X′X)−1 0

= 0

since MXX = 0 by construction. β̂ and ε̂ are jointly normally distributed since both are linear func-
tions of ε , and since they are uncorrelated they are independent.31

31Zero correlation is, in general, insufficient to establish that two random variables are independent. However, when
two random variables are jointly normally distribution, they are independent if and only if they are uncorrelated.
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Theorem 3.6. σ̂2 = ε̂
′
ε̂

n−k and so (n− k) σ̂2 = ε̂
′
ε̂ . ε̂ =MXε , so (n− k) σ̂2 = ε ′MX

′MXε and (n− k) σ̂
2

σ2 =
ε
′MXε

σ2 = ε

σ

′MX
ε

σ
= z′MXz since MX is idempotent (and hence symmetric) where z is a n by 1 mul-

tivariate normal vector with covariance In. Finally, applying the result in Lemma 3.1, z′MXz ∼∑n
i=1 λiχ

2
1,i where {λi}, i = 1,2, . . . ,n are the eigenvalues of MX and χ2

1,i, i = 1,2, . . . ,n are indepen-
dent χ2

1 random variables. Finally, note that MX is a rank n− k idempotent matrix, so it must have
n− k eigenvalues equal to 1, λi = 1 for i = 1,2, . . . ,n− k and k eigenvalues equal to 0, λi = 0 for
i = n− k+1, . . . ,n, and so the distribution is a χ2

n−k.

Lemma 3.1 (Quadratic Forms of Multivariate Normals). Suppose z ∼ N (0,Σ) where Σ is a n by n
positive semi-definite matrix, and let W be a n by n positive semi-definite matrix, then

z′Wz∼ N2 (0,Σ;W)≡
n∑

i=1

λiχ
2
1,i

where λi are the eigenvalues of Σ
1
2 WΣ

1
2 and N2 (·) is known as a type-2 normal..

This lemma is a special case of Baldessari (1967) as presented in White (Lemma 8.2, 1996).

Theorem 3.8. The OLS estimator is the BUE estimator since it is unbiased by Theorem 3.1 and it
achieves the Cramer-Rao lower bound (Theorem 3.7).

Theorem 3.9. Follows directly from the definition of a Student’s t by applying Theorems 3.4, 3.5, and
3.2.

Theorem 3.10. Follows directly from the definition of a Fν1,ν2 by applying Theorems 3.4, 3.5, and
3.2.

Theorem 3.12.

β̂ n−β =
(
X′X

)−1 X′ε

=

(
n∑

i=1

x′ixi

)−1 n∑
i=1

x′iε i

=

(∑n
i=1 x′ixi

n

)−1 ∑n
i=1 x′iεi

n

Since E[x′ixi] is positive definite by Assumption 3.8, and {xi} is stationary and ergodic by Assump-

tion 3.7, then
∑n

i=1 x′ixi
n will be positive definite for n sufficiently large, and so β̂ n exists. Apply-

ing the Ergodic Theorem (Theorem 3.21),
∑n

i=1 x′ixi
n

a.s.→ ΣXX and
∑n

i=1 x′iεi
n

a.s.→ 0 and by the Continu-
ous Mapping Theorem (Theorem 3.22) combined with the continuity of the matrix inverse function,(∑n

i=1 x′ixi
n

)−1 a.s.→ Σ
−1
XX , and so

β̂ n−β =

(∑n
i=1 x′ixi

n

)−1 ∑n
i=1 x′iεi

n
a.s.→ Σ

−1
XX ·0

a.s.→ 0.
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Finally, almost sure convergence implies convergence in probability and so β̂ n− β
p→ 0 or β̂ n

p→
β .

Theorem 3.21 (Ergodic Theorem). If {zt} is ergodic and its rth moment, µr, is finite, then

T−1
T∑

t=1

zr
t

a.s.→ µr

.

Theorem 3.22 (Continuous Mapping Theorem). Given g : Rk→ Rl , and any sequence of random k
by 1 vectors {zn} such that zn

a.s.→ z where z is k by 1, if g is continuous at z, then g(zn)
a.s.→ g(z).

Theorem 3.13. See White (Theorem 5.25, 2000).

Theorem 3.15.

ε̂
′
ε̂

n
=

(
y−Xβ̂ n

)′(
y−Xβ̂ n

)
n

=

(
y−Xβ̂ n

)′(
y−Xβ̂ n

)
n

=

(
y−Xβ̂ n +Xβ −Xβ

)′(
y−Xβ̂ n +Xβ −Xβ

)
n

=

(
y−Xβ +X

(
β − β̂ n

))′(
y−Xβ +X

(
β − β̂ n

))
n

=

(
ε +X

(
β − β̂ n

))′(
ε +X

(
β − β̂ n

))
n

=
ε ′ε

n
+2

(
β − β̂ n

)′
X′ε

n
+

(
β − β̂ n

)′
X′X

(
β − β̂ n

)
n

By the Ergodic Theorem and the existence of E[ε2
i ] (Assumption 3.10), the first term converged to

σ2. The second term(
β − β̂ n

)′
X′ε

n
=
(

β − β̂ n

)′∑
i=1 X′ε

n
p→ 0′0 = 0

since β̂ n is consistent and E[xiεi] = 0 combined with the Ergodic Theorem. The final term(
β − β̂ n

)′
X′X

(
β − β̂ n

)
n

=
(

β − β̂ n

)′ X′X
n

(
β − β̂ n

)
p→ 0′ΣXX0 = 0

and so the variance estimator is consistent.
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Theorem 3.17.

β̂ 1n =

(
X′1X1

n

)−1 X′1y
n(

X′1X1

n

)−1 X′1 (X1 +X2 + ε)

n
=

(
X′1X1

n

)−1 X′1X1

n
+

(
X′1X1

n

)−1 X′1X2

n
+

(
X′1X1

n

)−1 X′1ε

n
p→ β 1 +Σ

−1
X1X1

ΣX1X2β 2 +Σ
−1
X1X1

0

= β 1 +Σ
−1
X1X1

ΣX1X2β 2

where
(

X′1X1
n

)−1 p→ Σ
−1
X1X1

and X′1X1
n

p→ ΣX1X2 by the Ergodic and Continuous Mapping Theorems
(Theorems 3.21 and 3.22). Finally note that(

X′1X1

n

)−1 X′1X2

n
=

(
X′1X1

n

)−1 [
X1x2,1 X1x2,2 . . . X1x2,k2

]
=

[(
X′1X1

n

)−1

X1x2,1

(
X′1X1

n

)−1

X1x2,2 . . .

(
X′1X1

n

)−1

X1x2,k2

]
=
[
δ̂ 1n δ̂ 2n . . . δ̂ k2n

]
where δ j is the regression coefficient in x2, j = Xδ j +η j.

Theorem 3.18. See White (Theorem 6.3, 2000).

Theorem 3.19. See White (Theorem 6.4, 2000).

Theorem 3.20. By Assumption 3.15,

V−
1
2 y = V−

1
2 Xβ +V−

1
2 ε

and V
[
V−

1
2 ε

]
= σ2In, uncorrelated and homoskedastic, and so Theorem 3.3 can be applied.

Shorter Problems

Problem 3.1. Derive the OLS estimator for the model Yi = α + εi.

Problem 3.2. Derive the OLS estimator for the model Yi = βXi + εi.

Problem 3.3. What are information criteria and how are they used?

Problem 3.4. Outline the steps to compute the bootstrap variance estimator for a regression when the
data are heteroskedastic.

Problem 3.5. Discuss White’s covariance estimator, and in particular when should White’s covari-
ance estimator be used? What are the consequences to using White’s covariance estimator when it is
not needed? How can one determine if White’s covariance estimator is needed?

Problem 3.6. Suppose Zi = a+ bXi, and two models are estimated using OLS: Yi = β0 +β1Xi + εi
and Yi = γ0 + γ1Zi +ηi, What the relationship between γ and β and between ε̂i and η̂i?

Problem 3.7. Describe the steps to implement k-fold cross-validation in a regression to select a model.
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Longer Exercises

Exercise 3.1. Imagine you have been given the task of evaluating the relationship between the return
on a mutual fund and the number of years its manager has been a professional. You have a panel data
set which covers all of the mutual funds returns in the year 1970-2005. Consider the regression

Ri,t = α +βexper i,t + εi,t

where rit is the return on fund i in year t and exper it is the number of years the fund manager has held
her job in year t. The initial estimates of β and α are computed by stacking all of the observations
into a vector and running a single OLS regression (across all funds and all time periods).

1. What test statistic would you use to determine whether experience has a positive effect?

2. What are the null and alternative hypotheses for the above test?

3. What does it mean to make a type I error in the above test? What does it mean to make a type
II error in the above test?

4. Suppose that experience has no effect on returns but that unlucky managers get fired and thus
do not gain experience. Is this a problem for the above test? If so, can you comment on its
likely effect?

5. Could the estimated β̂ ever be valid if mutual funds had different risk exposures? If so, why?
If not, why not?

6. If mutual funds do have different risk exposures, could you write down a model which may be
better suited to testing the effect of managerial experience than the initial simple specification?
If it makes your life easier, you can assume there are only 2 mutual funds and 1 risk factor to
control for.

Exercise 3.2. Consider the linear regression

Yt = βXt + εt

1. Derive the least-squares estimator. What assumptions are you making in the derivation of the
estimator?

2. Under the classical assumptions, derive the variance of the estimator β̂ .

3. Suppose the errors εt have an AR(1) structure where εt = ρεt−1 +ηt where ηt
d→ N(0,1) and

|ρ|< 1. What is the variance of β̂ now?

4. Now suppose that the errors have the same AR(1) structure but the xt variables are i.i.d.. What
is the variance of β̂ now?

5. Finally, suppose the linear regression is now

Yt = α +βXt + εt

where εt has an AR(1) structure and that xt is i.i.d.. What is the covariance of [α β ]′?
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Exercise 3.3. Consider the simple regression model Yi = βX1,i+εi where the random error terms are
i.i.d. with mean zero and variance σ2 and are uncorrelated with the X1,i.

1. Show that the OLS estimator of β is consistent.

2. Is the previously derived OLS estimator of β still consistent if Yi = α +βX1,i + εi? Show why
or why not.

3. Now suppose the data generating process is

Yi = β1X1,i +β2X2,i + εi

Derive the OLS estimators of β1 and β2.

4. Derive the asymptotic covariance of this estimator using the method of moments approach.

(a) What are the moment conditions?

(b) What is the Jacobian?

(c) What does the Jacobian limit to? What does this require?

(d) What is the covariance of the moment conditions. Be as general as possible.

In all of the above, clearly state any additional assumptions needed.

Exercise 3.4. Let Ŝ be the sample covariance matrix of z= [y X], where X does not include a constant

Ŝ = n−1
n∑

i=1

(zi− z̄)′(zi− z̄)

Ŝ =

[
ŝyy ŝ′xy
ŝxy Ŝxx

]
and suppose n, the sample size, is known (Ŝ is the sample covariance estimator). Under the small-
sample assumptions (including homoskedasticity and normality if needed), describe one method, us-
ing only Ŝ, X̄ (the 1 by k−1 sample mean of the matrix X, column-by-column), ȳ and n, to

1. Estimate β̂1, . . . , β̂k from a model

Yi = β1 +β2X2,i + . . .+βkXk,i + εi

2. Estimate s, the standard error of the regression

3. Test H0 : β j = 0, j = 2, . . . ,k

Exercise 3.5. Consider the regression model

Yi = β1 +β2Xi + εi

where the random error terms are i.i.d. with mean zero and variance σ2 and are uncorrelated with the
xi. Also assume that xi is i.i.d.with mean µx and variance σ2

x , both finite.
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1. Using scalar notation, derive the OLS estimators of β1 and β2.

2. Show these estimators are consistent. Are any further assumptions needed?

3. Show that the matrix expression for the estimator of the regression parameters, β̂ =(X′X)
−1 X′y,

is identical to the estimators derived using scalar notation.

Exercise 3.6. Let xmβ be the best linear projection of Ym. Let εm be the prediction error.

1. What is the variance of a projected Y ?

2. What is the variance if the β s are estimated using regressors that do not include observation m
(and hence not xm or εm)? Hint: You can use any assumptions in the notes, just be clear what
you are assuming.

Exercise 3.7. Are Wald tests of linear restrictions in a linear regression invariant to linear reparame-
terizations? Hint: Let F be an invertible matrix. Parameterize W in the case where H0 : Rβ − r = 0
and H0 : F(Rβ − r) = FRβ −Fr = 0.

1. Are they the same?

2. Show that n ·R2 has an asymptotic χ2
k−1 distribution under the classical assumptions when the

model estimated is
Yi = β1 +β2X2,i + . . .+βkXk,i + εi

Hint: What is the does the distribution of c/ν converge to as ν →∞ when c∼ χ2
ν .

Exercise 3.8. Suppose an unrestricted model is

Yi = β1 +β2X1,i +β3X2,i +β4X3,i + εi

1. Sketch the steps required to test a null H0 : β2 = β3 = 0 in the large-sample framework using a
Wald test and an LM test.

2. Sketch the steps required to test a null H0 : β2 + β3 + β4 = 1 in the small-sample framework
using a Wald test, a t-test, an LR test, and an LM test.

In the above questions be clear what the null and alternative are, which regressions must be estimated,
how to compute any numbers that are needed and the distribution of the test statistic.

Exercise 3.9. Let Yi and Xi conform to the small-sample assumptions and let Yi = β1 + β2Xi + εi.
Define another estimator

β̆2 =
ȲH− ȲL

X̄H− X̄L

where X̄H is the average value of Xi given Xi > median(x), and ȲH is the average value of Yi for n
such that Xi > median(x). X̄L is the average value of Xi given Xi ≤median(x), and ȲL is the average
value of Yi for n such that Xi ≤ median(x) (both X̄ and Ȳ depend on the order of Xi, and not Yi). For
example, suppose the Xi were ordered such that X1 < X2 < X3 < .. . < Xi and n is even. Then,

X̄L =
2
n

n/2∑
i=1

Xi
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and

X̄H =
2
n

n∑
i=n/2+1

Xi

1. Is β̆2 unbiased, conditional on X?

2. Is β̆2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

3. What is the variance of β̆2, conditional on X?

Exercise 3.10. Suppose
Yi = β1 +β2xi + εi

and that variable Zi is available where V [Zi] = σ2
z > 0, Corr(Xi,Zi) = ρ 6= 0 and E [εi|z] = 0, n =

1, . . . ,N. Further suppose the other assumptions of the small-sample framework hold. Rather than the
usual OLS estimator,

β̈2 =

∑n
i=1 (Zi− Z̄)Yi∑n
i=1 (Zi− Z̄)Xi

is used.

1. Is β̈2 a reasonable estimator for β2?

2. What is the variance of β̈2, conditional on x and z?

3. What does the variance limit to (i.e., not conditioning on x and z)?

4. How is this estimator related to OLS, and what happens to its variance when OLS is used (Hint:
What is Corr(Xi,Xi)?)

Exercise 3.11. Let {Yi}n
i=1 and {Xi}n

i=1 conform to the small-sample assumptions and let Yi = β1 +
β2Xi + εi. Define the estimator

β̆2 =
ȲH− ȲL

X̄H− X̄L

where X̄H is the average value of Xi given Xi > median(x), and ȲH is the average value of Yi for i
such that Xi > median(x). X̄L is the average value of Xi given Xi ≤median(x), and ȲL is the average
value of Yi for i such that Xi ≤ median(x) (both X̄ and Ȳ depend on the order of Xi, and not Yi). For
example, suppose the Xi were ordered such that X1 < X2 < X3 < .. . < Xn and n is even. Then,

X̄L =
2
n

n/2∑
i=1

Xi

and

X̄H =
2
n

n∑
i=n/2+1

Xi

1. Is β̆2 unbiased, conditional on X?
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2. Is β̆2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

3. What is the variance of β̆2, conditional on X?

Next consider the estimator

β̈2 =
Ȳ
X̄

where Ȳ and X̄ are sample averages of {Yi} and {Xi}, respectively.

4. Is β̈2 unbiased, conditional on X?

5. Is β̈2 consistent? Are any additional assumptions needed beyond those of the small-sample
framework?

6. What is the variance of β̈2, conditional on X?

Exercise 3.12. Suppose an unrestricted model is

Yi = β1 +β2X1,i +β3X2,i +β4X3,i + εi

1. Discuss which features of estimators each of the three major tests, Wald, Likelihood Ratio, and
Lagrange Multiplier, utilize in testing.

2. Sketch the steps required to test a null H0 : β2 = β3 = 0 in the large-sample framework using
Wald, LM, and LR tests.

3. What are type I & II errors?

4. What is the size of a test?

5. What is the power of a test?

6. What influences the power of a test?

7. What is the most you can say about the relative power of a Wald, LM, and LR test of the same
null?

Exercise 3.13. Consider the regression model

Yi = β1 +β2Xi + εi

where the random error terms are i.i.d. with mean zero and variance σ2 and are uncorrelated with the
Xi. Also assume that Xi is i.i.d.with mean µx and variance σ2

x , both finite.

1. Using scalar notation, derive the OLS estimators of β1 and β2.

2. Why are these estimators are consistent? Are any further assumptions needed?

3. Show that the matrix expression for the estimator of the regression parameters, β̂ =(X′X)
−1 X′y,

is identical to the estimators derived using scalar notation.
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4. Suppose instead
Yi = γ1 + γ2 (Xi− X̄)+ εi

was fit to the data. How are the estimates of the γs related to the β s?

5. What can you say about the relationship between the t-statistics of the γs and the β s?

6. How would you test for heteroskedasticity in the regression?

7. Since the errors are i.i.d. there is no need to use White’s covariance estimator for this regression.
What are the consequences of using White’s covariance estimator if it is not needed?

Exercise 3.14. Suppose Yi = α +βXi + εi where E [εi|X ] = 0 and V [εi] = σ2 for all i .

1. Derive the OLS estimators of α and β .

2. Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, σ̂2Σ

−1
XX , and White’s parameter covariance estimator, Σ

−1
XX SΣ

−1
XX ?

3. Describe a procedure to formally test whether White’s covariance estimator is required.

4. Suppose the true model is as above, but instead the model Yi = γ + εi is fit. What is the most
you can say about the the OLS estimate of γ̂?

5. What is Windsorization in the context of a regression, and how is it useful?

Exercise 3.15. Consider the APT regression

Re
t = α +βmRe

m,t +βsRsmb,t +βvRhml,t + εt

where Re
m,t is the excess return on the market, Rsmb,t is the return on the size factor, Rhml,t is the return

on value factor and Re
t is an excess return on a portfolio of assets. Using the information provided in

the tables below below, answer the following questions:

1. Is there evidence that this portfolio is market neutral?

2. Are the size and value factors needed in this portfolio to adequately capture the cross-sectional
dynamics?

3. Is there evidence of conditional heteroskedasticity in this model?

4. What are the trade-offs for choosing a covariance estimator for making inference on this model?

5. Define the size and power of a statistical test.

6. What factors affect the power of a statistical test?

7. Outline the steps to implement the correct bootstrap covariance estimator for these parameters.
Justify the method you chose using the information provided.
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Notes: All models were estimated on n = 100 data points. Models 1 and 2 correspond to the
specification above. In model 1 Rsmb and Rhml have been excluded. Model 3, 4 and 5 are all
version of

ε̂
2
t = γ0 + γ1Re

m,t + γ2Rsmb,t + γ3Rhml,t + γ4
(
Re

m,t
)2

+ γ5Re
m,tRsmb,t

+ γ6Re
m,tRhml,t + γ7R2

smb,t + γ8Rsmb,tRhml,t + γ9R2
hml,t +ηt

ε̂t was computed using Model 1 for the results under Model 3, and using model 2 for the results
under Models 4 and 5. R2 is the R-squared and n is the number of observations.
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Parameter Estimates

Model 1 Model 2 Model 3 Model 4 Model 5

α 0.128 0.089 γ0 0.984 0.957 0.931
βm 1.123 0.852 γ1 -0.779 -0.498
βsmb 0.600 γ2 -0.046
βhml -0.224 γ3 0.124

γ4 0.497 0.042 0.295
γ5 0.049
γ6 0.684
γ7 0.036 -0.149
γ8 -0.362
γ9 -0.005 0.128

R2 0.406 0.527 0.134 0.126 0.037
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Parameter Covariance Estimates

The estimated covariance matrices from the asymptotic distribution

√
n
(

β̂ − β̂ 0

)
d→ N (0,C)

are below where C is either σ̂2Σ̂
−1
XX or Σ̂

−1
XX ŜΣ̂

−1
XX .

CAP-M

σ̂
2
Σ̂
−1
XX

α βm

α 1.365475 0.030483
βm 0.030483 1.843262

Σ̂
−1
XX ŜΣ̂

−1
XX

α βm

α 1.341225 -0.695235
βm -0.695235 2.747142

Fama-French Model

σ̂
2
Σ̂
−1
XX

α βm βsmb βhml

α 1.100680 0.103611 -0.088259 -0.063529
βm 0.103611 1.982761 -0.619139 -0.341118
βsmb -0.088259 -0.619139 1.417318 -0.578388
βhml -0.063529 -0.341118 -0.578388 1.686200

Σ̂
−1
XX ŜΣ̂

−1
XX

α βm βsmb βhml

α 1.073227 -0.361618 -0.072784 0.045732
βm -0.361618 2.276080 -0.684809 0.187441
βsmb -0.072784 -0.684809 1.544745 -1.074895
βhml 0.045732 0.187441 -1.074895 1.947117
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χ2
m critical values

Critical value for a 5% test when the test statistic has a χ2
m distribution.

m 1 2 3 4 8 9 10
Crit Val. 3.84 5.99 7.81 9.48 15.50 16.91 18.30

m 90 91 98 99 100
Crit Val. 113.14 114.26 122.10 123.22 124.34

Matrix Inverse

The inverse of a 2 by 2 matrix [
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]

Exercise 3.16. Suppose Yi = α +βXi + εi where E [εi|X ] = 0 and V [εi] = σ2 for all i.

1. Describe the trade-offs when deciding whether to use the classic parameter covariance estima-
tor, σ̂2Σ

−1
XX , and White’s parameter covariance estimator, Σ

−1
XX SΣ

−1
XX ?

2. Describe a procedure to formally test whether White’s covariance estimator is required.

3. Suppose the true model is as above, but instead the model Yi = γ + εi is fit. What is the most
you can say about the the OLS estimate of γ̂?

4. Define the size and power of a statistical test.

5. What factors affect the power of a statistical test?

6. What is Windsorization in the context of a regression, and how is it useful?


